Previous |  Up |  Next

Article

Keywords:
third order; nonoscillation; delay and advanced arguments; neutral difference equation
Summary:
In this paper, we present several sufficient conditions for the existence of nonoscillatory solutions to the following third order neutral type difference equation $$ \Delta ^3(x_n+a_n x_{n-l} +b_n x_{n+m})+p_n x_{n-k} - q_n x_{n+r}=0,\quad n\geq n_0 $$ via Banach contraction principle. Examples are provided to illustrate the main results. The results obtained in this paper extend and complement some of the existing results.
References:
[1] Agarwal, R. P.: Difference Equations and Inequalities: Theory, Methods and Applications. Pure and Applied Mathematics, Marcel Dekker 228. Marcel Dekker, New York (2000). DOI 10.1201/9781420027020 | MR 1740241 | Zbl 0952.39001
[2] Agarwal, R. P., Bohner, M., Grace, S. R., O'Regan, D.: Discrete Oscillation Theory. Hindawi Publishing, New York (2005). DOI 10.1155/9789775945198 | MR 2179948 | Zbl 1084.39001
[3] Agarwal, R. P., Grace, S. R., Akin-Bohner, E.: On the oscillation of higher order neutral difference equations of mixed type. Dyn. Syst. Appl. 11 (2002), 459-469. MR 1946136 | Zbl 1046.39001
[4] Chen, M. P., Zhang, B. G.: The existence of the bounded positive solutions of delay difference equations. Panam. Math. J. 3 (1993), 79-94. MR 1201542 | Zbl 0847.39005
[5] Lalli, B. S., Zhang, B. G.: On existence of positive solutions and bounded oscillations for neutral difference equations. J. Math. Anal. Appl. 166 (1992), 272-287. DOI 10.1016/0022-247X(92)90342-B | MR 1159653 | Zbl 0763.39002
[6] Lalli, B. S., Zhang, B. G., Li, J. Z.: On the oscillation of solutions and existence of positive solutions of neutral difference equations. J. Math. Anal. Appl. 158 (1991), 213-233. DOI 10.1016/0022-247X(91)90278-8 | MR 1113411 | Zbl 0732.39002
[7] Li, Q., Liang, H., Dong, W., Zhang, Z.: Existence of nonoscillatory solutions of higher-order difference equations with positive and negative coefficients. Bull. Korean Math. Soc. 45 (2008), 23-31. DOI 10.4134/BKMS.2008.45.1.023 | MR 2391449 | Zbl 1161.39006
[8] Selvarangam, S., Geetha, S., Thandapani, E.: Oscillation and asymptotic behavior of third order nonlinear neutral difference equations with mixed type. J. Nonlinear Funct. Anal. 2017 (2017), Article ID 2, 17 pages. DOI 10.23952/jnfa.2017.2
[9] Thandapani, E., Graef, J. R., Spikes, P. W.: On existence of positive solutions and oscillations of neutral difference equations of odd order. J. Differnce Equ. Appl. 2 (1996), 175-183. DOI 10.1080/10236199608808052 | MR 1384567 | Zbl 0855.39013
[10] Thandapani, E., Karunakaran, R., Arockiasamy, I. M.: Existence results for nonoscillatory solutions of third order nonlinear neutral difference equations. Sarajevo J. Math. 5(17) (2009), 73-87. MR 2527150 | Zbl 1183.39010
[11] Thandapani, E., Kavitha, N.: Oscillatory behavior of solutions of certain third order mixed neutral difference equations. Acta Math. Sci., Ser. B, Engl. Ed. 33 (2013), 218-226. DOI 10.1016/S0252-9602(12)60206-9 | MR 3003755 | Zbl 1289.39025
[12] Thandapani, E., Selvarangam, S., Seghar, D.: Oscillatory behavior of third order nonlinear difference equation with mixed neutral terms. Electron. J. Qual. Theory Differ. Equ. 2014 (2014), Article ID 53, 11 pages. DOI 10.14232/ejqtde.2014.1.53 | MR 3282972 | Zbl 1324.39015
[13] Vidhyaa, K. S., Dharuman, C., Graef, J. R., Thandapani, E.: Existence of nonoscillatory solutions to third order nonlinear neutral difference equations. Filomat 32 (2018), 4981-4991. DOI 10.2298/FIL1814981V | MR 3898546
[14] Zhang, B.: Oscillatory behavior of solutions of general third order mixed neutral difference equations. Acta Math. Appl. Sin., Engl. Ser. 31 (2015), 467-474. DOI 10.1007/s10255-015-0480-6 | MR 3357914 | Zbl 1325.39009
[15] Zhou, Y.: Existence of nonoscillatory solutions of higher-order neutral difference equations with general coefficients. Appl. Math. Lett. 15 (2002), 785-791. DOI 10.1016/S0893-9659(02)00043-5 | MR 1920976 | Zbl 1029.39009
[16] Zhou, Y., Huang, Y. Q.: Existence for nonoscillatory solutions of higher-order nonlinear neutral difference equations. J. Math. Anal. Appl. 280 (2003), 63-76 \99999DOI99999 10.1016/S0022-247X(03)00017-9 \vfil. DOI 10.1016/S0022-247X(03)00017-9 | MR 1972192 | Zbl 1036.39018
Partner of
EuDML logo