Previous |  Up |  Next

Article

Keywords:
Kleinecke-Shirokov theorem; generalized commutator
Summary:
We prove that for normal operators $N_1, N_2\in \mathcal {L(H)},$ the generalized commutator $[N_1, N_2; X]$ approaches zero when $[N_1,N_2; [N_1, N_2; X]]$ tends to zero in the norm of the Schatten-von Neumann class $\mathcal {C}_p$ with $p>1$ and $X$ varies in a bounded set of such a class.
References:
[1] Abdessemed, A., Davies, E. B.: Some commutator estimates in the Schatten classes. J. Lond. Math. Soc., II. Ser. 39 (1989), 299-308. DOI 10.1112/jlms/s2-39.2.299 | MR 0991663 | Zbl 0692.47009
[2] Ackermans, S. T. M., Eijndhoven, S. J. L. van, Martens, F. J. L.: On almost commuting operators. Indag. Math. 45 (1983), 385-391. DOI 10.1016/S1385-7258(83)80015-8 | MR 0731821 | Zbl 0573.47024
[3] Kleinecke, D. C.: On operator commutators. Proc. Am. Math. Soc. 8 (1957), 535-536. DOI 10.1090/S0002-9939-1957-0087914-4 | MR 0087914 | Zbl 0079.12904
[4] Shirokov, F. V.: Proof of a conjecutre of Kaplansky. Usp. Mat. Nauk 11 (1956), 167-168 Russian. MR 0087913 | Zbl 0070.34201
[5] Shulman, V.: Some remarks on the Fuglede-Weiss theorem. Bull. Lond. Math. Soc. 28 (1996), 385-392. DOI 10.1112/blms/28.4.385 | MR 1384827 | Zbl 0892.47007
[6] Shulman, V., Turowska, L.: Operator synthesis. II: Individual synthesis and linear operator equations. J. Reine Angew. Math. 590 (2006), 143-187. DOI 10.1515/CRELLE.2006.007 | MR 2208132 | Zbl 1094.47054
Partner of
EuDML logo