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Abstract. We prove that for normal operators N1, N2 ∈ L(H), the generalized commuta-
tor [N1, N2;X] approaches zero when [N1, N2; [N1, N2;X]] tends to zero in the norm of the
Schatten-von Neumann class Cp with p > 1 and X varies in a bounded set of such a class.
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1. Introduction

Let H be a separable, infinite dimensional, complex Hilbert space, and let L(H)

denote the algebra of all bounded linear operators on H and Cp(H) (or Cp) the

Schatten-von Neumann p-classes with |·|p, p > 1, being their respective norm. Fur-

thermore, let K(H) (or K) denote the ideal of compact operators. For arbitrary

operators S, T,X ∈ L(H), [S, T ;X ] denotes the generalized commutator, that is

SX −XT , and for S = T this becomes the usual commutator of S and X which is

denoted by [S;X ].

Kleinecke in [3] and Shirokov in [4] proved that for arbitrary S, T,X ∈ L(H)

such that [S, T ; [S, T ;X ]] = 0, [S, T ;X ] is quasi-nilpotent, that is its spectral ra-

dius r([S, T ;X ]) is zero. Ackermans-van Eijndhoven-Martens (see [2], Theorem 0.5)

obtained a stronger conclusion under the additional hypothesis of normality.

Theorem 1.1 ([2], Theorem 0.5). Let N1, N2 ∈ L(H) be normal operators and

X ∈ L(H) be such that [N1, N2; [N1, N2;X ]] = 0. Then [N1, N2;X ] = 0.

Furthermore, Ackermans-van Eijndhoven-Martens provided a result concerning

the asymptotic dependence of [N1, N2;X ] in terms of [N1, N2; [N1, N2;X ]] in the

context of an algebra topology on L(H) as follows.
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Definition 1.1. A topology τ on L(H) is an algebra topology if

(a) τ is not finer than the uniform (norm) topology,

(b) (L(H), τ) is a locally convex vector space, and

(c) the mapping X 7→ SXT is τ -τ continuous for any S, T ∈ L(H).

Theorem 1.2 ([2], Theorem 2.5). Let τ be an algebra topology on L(H) and letW

be a τ -open neighborhood of 0H. Let N1 and N2 be normal operators of L(H) and

K > 0. Then there exists a τ -open neighborhood V of 0H so that [N1, N2;X ] ∈ W

for all X ∈ L(H) with both ‖X‖ 6 K and [N1, N2; [N1, N2;X ]] ∈ V.

2. Results

It is the purpose of this section to extend such a result to normed ideals.

Definition 2.1. A proper two-sided ideal J of L(H) is called a normed ideal if

it is endowed with a norm |·|J so that

(a) (J , |·|J ) is a Banach space,

(b) |SXT |J 6 ‖S‖‖T ‖|X |J for S, T ∈ L(H) and X ∈ J ,

(c) |UXV |J = |X |J for any unitary operators U, V ∈ L(H) and X ∈ J , and

(d) |X∗|J = |X |J for any X ∈ J .

The above definition differs from what traditionally is called a normed ideal. In

what follows, J denotes a normed ideal according to the definition above.

Lemma 2.1. Let A ∈ L(H) be a self-adjoint operator and X ∈ J . Then the

function f : R → J defined by f(t) = eitAXe−itA is J -differentiable, that is

DJ (f)(t0) := lim
t→t0

f(t)− f(t0)

t− t0
= ieit0A[A,X ]e−it0A.

In particular, f is continuous.

P r o o f. Let A and X be as in the hypothesis and we prove that

lim
t→t0

∣∣∣
f(t)− f(t0)

t− t0
− ieit0A[A,X ]e−it0A

∣∣∣
J

= 0.

Indeed,

f(t)− f(t0)

t− t0
− ieit0A[A,X ]e−it0A =

eitAXe−itA − eit0AXe−it0A

t− t0
− ieit0A[A,X ]e−it0A

= eit0A
(ei(t−t0)AXe−i(t−t0)A −X

t− t0
− i[A;X ]

)
e−it0A

= eit0A
(ei(t−t0)AX −Xei(t−t0)A

t− t0
− i[A;X ]ei(t−t0)A

)
e−itA.
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Since the operator eisA is unitary for any s ∈ R, it is enough to show

lim
u→0

∣∣∣
eiuAX −XeiuA

u
− i[A;X ]eiuA

∣∣∣
J

= 0.

Indeed,

eiuAX −XeiuA =

∞∑

k=0

(iuA)k

k!
X −X

(iuA)k

k!
= i[A;X ] +

∞∑

k=2

(iu)k

k!
[AkX −XAk]

and by an induction argument one can prove that

|AkX −XAk|J 6 k‖A‖k−1|[A;X ]|J ,

and thus

∣∣∣
eiuAX −XeiuA

u
− i[A;X ]eiuA

∣∣∣
J

6

(
‖I − eiuA‖+

∞∑

k=2

|u|k−1

(k − 1)!
‖A‖k−1

)
|[A;X ]|J .

Furthermore, ‖I − eiuA‖ 6 e|u|‖A‖ − 1 and consequently

∣∣∣
eiuAX −XeiuA

u
− i[A;X ]eiuA

∣∣∣
J
6 2(e|u|‖A‖ − 1)|[A;X ]|J ,

which ends the proof. �

Theorem 2.1. Let A be a self-adjoint operator in L(H) and K > 0. Then for

any ε > 0, there exists δ > 0 so that for any X ∈ J with |X |J 6 K, the inequality

|[A; [A;X ]]|J < δ implies |[A;X ]|J < ε.

P r o o f. For A and X as in the hypothesis, let f be the function defined above.

According to Lemma 2.1, f is twice J -differentiable and

i[A;X ] = DJ (f)(0) =
f(u)− f(0)

u
−

1

u

∫ u

0

(∫ t

0

DJ (DJ (f))(s) ds

)
dt.

Let ε > 0 and X ∈ J with |X |J 6 K and u > 0; thus |f(u) − f(0)|J 6 2K and

|(f(u)− f(0))/u|J < 1
2ε for u > 4K/ε. On the other hand, let |[A; [A;X ]]|J < δ

with δ to be described later; thus

∣∣∣∣
1

u

∫ u

0

(∫ t

0

DJ (DJ (f))(s) ds

)
dt

∣∣∣∣
J

6
1

u

∫ u

0

(∫ t

0

|[A; [A;X ]]|J ds

)
dt 6

u

2
δ.

Selecting δ < ε/u, and since u has to be large enough, precisely u > 4K/ε, then

δ < ε2/(4K) ensures that |(1/u)
∫ u

0 (
∫ t

0 DJ (DJ (f))(s) ds) dt|J 6 1
2ε, and conse-

quently |[A;X ]|J < ε. �
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Corollary 2.1. Let A and B be self-adjoint operators in L(H) and K > 0. Then

for any ε > 0, there exists δ > 0 such that for any X ∈ J with |X |J 6 K, the

inequality |[A,B; [A,B;X ]]|J < δ implies |[A,B;X ]|J < ε.

P r o o f. Put C = A ⊕ B and X̃ =

(
0 X

0 0

)
, and observe that [C; X̃ ] =(

0 [A,B;X ]

0 0

)
. Moreover, for an arbitrary X ∈ J is equivalent to X̃ ∈ J and

|X |J = |X̃|J , and by applying Theorem 2.1, the proof is done. �

The result can be extended to normal operators, but relative to normed ideals for

which the Fuglede-Putnam theorem is known to be valid.

Theorem 2.2 ([1], [5]). If N1, N2 are normal operators and X ∈ L(H) so that

[N1, N2;X ] ∈ Cp with p > 1, then [N∗
1 , N

∗
2 ;X ] ∈ Cp and

|[N∗
1 , N

∗
2 ;X ]|p < c(p)|[N1, N2;X ]|p.

On other the hand, the Fuglede-Putnam theorem is not valid if p = 1 (cf. [6],

Corollary 8.6), more precisely there exist a normal operator N and a compact op-

erator X so that [N ;X ] is a rank one operator (thus, a trace-class operator) and

[N∗, X ] is not a trace-class operator.

Theorem 2.3. Let N1 and N2 be normal operators in L(H), p > 1 and K > 0.

Then for any ε > 0, there exists δ > 0 so that for any X ∈ Cp with |X |p 6 K, the

inequality |[N1, N2; [N1, N2;X ]]|p < δ implies |[N1, N2;X ]|p < ε.

P r o o f. LetAj+iBj = Nj , j = 1, 2, be the Cartesian decomposition ofNj . LetN1

and N2 be normal operators that satisfy |[N1, N2; [N1, N2;X ]]|p < δ. According to

Theorem 2.2,

|[N∗
1 , N

∗
2 ; [N1, N2;X ]]|p < c(p) δ.

Since [N∗
1 , N

∗
2 ; [N1, N2;X ]] = [N1, N2; [N

∗
1 , N

∗
2 ;X ]], it implies

|[N1, N2; [N
∗
1 , N

∗
2 ;X ]]|p < c(p) δ,

and after one more application of Theorem 2.2,

|[N∗
1 , N

∗
2 ; [N

∗
1 , N

∗
2 ;X ]]|p < c(p)2 δ.

Consequently,

|[C1, C2; [C1, C2;X ]]|p < d(p) δ,
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where C1 = A1, C2 = A2 or C1 = B1, C2 = B2 and d(p) is a constant that depends

only on p, which proves that |[C1, C2; [C1, C2;X ]]|p becomes as small as necessary

if |[N1, N2; [N1, N2;X ]]|p does so. For an arbitrary ε > 0, let δ = min {δ1, δ2},

where δ1 and δ2 are the two positive δ’s resulting by applying Corollary 2.1 for the

pairsA1, A2 andB1, B2, and thus |[A1, A2;X ]|p < ε, |[B1, B2;X ]|p < ε. Consequently

|[N1, N2;X ]|p < 2ε and the proof is finished. �

The hypothesis of normality can be relaxed as follows.

Theorem 2.4. Let T1, T2 ∈ L(H) be such that T1 and T ∗
2 are subnormal oper-

ators, and let p > 1 and K > 0. Then for any ε > 0, there exists δ > 0 so that

for any X ∈ Cp with |X |p 6 K, the inequality |[T1, T2; [T1, T2;X ]]|p < δ implies

|[T1, T2;X ]|p < ε.

P r o o f. Let T1 and T ∗
2 be subnormal operators. One may assume that there

are some normal operators Ni ∈ L(H⊕H), i = 1, 2, so that N1 =

(
S1 A

0 B

)
and

N2 =

(
S2 0

C D

)
, after an extension by zero if necessary. Thus,

[N1, N2;X ⊕ 0] = [S1, S2;X ]⊕ 0

[N1, N2; [N1, N2;X ⊕ 0]] = [S1, S2; [S1, S2;X ]]⊕ 0,

and
|[N1, N2;X ⊕ 0]|p = |[S1, S2;X ]⊕ 0|p

|[N1, N2; [N1, N2;X ⊕ 0]]|p = |[S1, S2; [S1, S2;X ]]⊕ 0|p

as well, and Theorem 2.3 can be applied. �

3. Remarks

Let π : L(H) → L(H)/K denote the canonical projection onto the Calkin algebra

L(H)/K which is a C∗-algebra. Let N1, N2 ∈ L(H) be essentially normal operators

(that is, their self-commutator is a compact operator, or equivalently π(Ni) is a nor-

mal operator, i = 1, 2) and let X ∈ L(H) be such that [N1, N2; [N1, N2;X ]] ∈ K,

or equivalently [π(N1), π(N2); [π(N1), π(N2);π(X)]] = 0. According to Theorem 1.1,

[N1, N2;X ] ∈ K.

It is natural to ask a similar question whether [N1, N2; [N1, N2;X ]] ∈ J implies

[N1, N2;X ] ∈ J relative to a normed ideal J when X ∈ L(H), not necessarilly

in a normed ideal. The most appropriate choice of a normed ideal is the class of

Hilbert-Schmidt operators C2.
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Let N ∈ L(H) be a normal operator and X ∈ L(H) be such that [N ; [N ;X ]] ∈ C2.

Does it imply that [N ;X ] ∈ C2?

The following example shows that the answer to the above question is negative.

In what follows, the operators act on l2(N), the Hilbert space of square-summable

complex sequences, and {ei}i>0 is its cononical orthonormal basis.

Example 3.1. Let D be a diagonal operator with the diagonal entries di, i > 1,

described below. Let X be the unilateral shift operator. Then [D; [D;X ]] ∈ C2

and [D;X ] /∈ C2.

Indeed, for i > 1, the entry (i, i − 1) of Y = [D;X ] is yi,i−1 = (di − di−1) and

that of Z = [D; [D;X ]] is zi,i−1 = (di − di−1)
2, and all other entries of Y and Z are

equal to zero. Let di − di−1 = ai−1, i > 1 and Z ∈ C2 be equivalent to
∞∑
i=1

|ai|
4 < ∞

and Y /∈ C2 be equivalent to
∞∑
i=1

|ai|
2 = ∞. Furthermore, the boundedness of D be

equivalent to the boundedness of the partial sums of the series
∞∑
i=1

ai. An instance of

such a sequence is ai = (−1)i/iα with α ∈ (14 ,
1
2 ].
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