Previous |  Up |  Next

Article

Keywords:
sampled-data; event-triggered; exponential stability; output feedback; inherently nonlinear systems
Summary:
In this paper, we discuss exponential stability for nonlinear systems with sampled-data-based event-triggered schemes. First, a framework is proposed to analyze exponential stability for nonlinear systems under some different triggering conditions. Based on these results, output feedback exponential stabilization is investigated for a class of inherently nonlinear systems under a kind of event-triggered strategies. Finally, the rationality of the theoretical work is verified by numerical simulations.
References:
[1] Bacciotti, A., Rosier, L.: Lyapunov Functions and Stability in Control Theory. Springer, Berlin - Heidelberg 2005. MR 2146587
[2] Chen, W., Ren, W.: Event-triggered zero-gradient-sum distributed consensus optimization over directed networks. Automatica 65 (2016), 90-97. DOI  | MR 3447697 | Zbl 1328.93167
[3] Ding, L., Han, Q., Zhang, X.: Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an event-triggered communication mechanism. IEEE Trans. Industr. Inform. 15 (2019), 7, 3910-3922. DOI 
[4] Du, H., Li, S., Qian, C., He, Y.: Global stabilization of a class of inherently nonlinear systems under sampled-data control. Acta Automat. Sinica 40 (2014), 2, 379-384. MR 3242367
[5] Du, H., Qian, C., Li, S., Chu, Z.: Global sampled-data output feedback stabilization for a class of uncertain nonlinear systems. Automatica 99 (2019), 403-411. DOI  | MR 3880631
[6] Fridman, E., Seuret, A., Richard, J. P.: Robust sampled-data stabilization of linear systems: an input delay approach. Automatica 40 (2004), 8, 1441-1446. DOI  | MR 2153059
[7] Gu, Z., Zhao, H., Yue, D., Yang, F.: Event-triggered dynamic output feedback control for networked control systems with probabilistic nonlinearities. Inform. Sci. 457-458 (2018), 99-112. DOI  | MR 3807030
[8] Heemels, W. P. M. H., Donkers, M. C. F., Andrew, R. T.: Periodic event-triggered control for linear systems. IEEE Trans. Automat. Control 58 (2013), 4, 847-861. DOI  | MR 3038789
[9] Hu, S., Yue, D., Xie, X., Ma, Y., Yin, X.: Stabilization of neural-network-based control systems via event-triggered control with nonperiodic sampled data. IEEE Trans. Neural Networks Learning Systems 29 (2018), 3, 573-585. DOI  | MR 3774113
[10] Jiang, Y., Zhai, J.: Global finite-time stabilization for a class of high-order switched nonlinear systems via sampled-data control. Int. J. Robust Nonlinear Control 30 (2020), 302-320. DOI  | MR 4049012
[11] Kawski, M.: Homogeneous stabilizing feedback laws. Control Theory Advanced Technol. 6 (1990), 4, 497-516. MR 1092775
[12] Li, S., Guo, J., Xiang, Z.: Global stabilization of a class of switched nonlinear systems under sampled-data control. IEEE Trans. Systems Man Cybernet.: Systems 49 (2019), 9, 1912-1919. DOI 10.1109/TSMC.2018.2836930
[13] Li, X., Wu, J.: Sufficient stability conditions of nonlinear differential systems under impulsive control with state-dependent delay. IEEE Trans. Automat. Control 63 (2018), 1, 306-311. DOI  | MR 3744852
[14] Li, Z., Zhao, J.: Output feedback stabilization for a general class of nonlinear systems via sampled-data control. Int. J. Robust Nonlinear Control 28 (2018), 7, 2853-2867. DOI  | MR 3779426
[15] Li, L., Zou, W., Fei, S.: Event-based dynamic output-feedback controller design for networked control systems with sensor and actuator saturations. J. Franklin Inst. 354 (2017), 11, 4331-4352. DOI 10.1016/j.jfranklin.2017.02.021 | MR 3655772
[16] Peng, C., Han, Q. L., Yue, D.: To transmit or not to transmit: a discrete event-triggered communication scheme for networked takagi-sugeno fuzzy systems. IEEE Trans. Fuzzy Systems 21 (2013), 1, 164-170. DOI 
[17] Peng, C., Yang, T. C.: Event-triggered communication and $H_\infty$ control co-design for networked control systems. Automatica 49 (2013), 5, 1326-1332. DOI  | MR 3044010
[18] Polendo, J., Qian, C.: A generalized homogeneous domination approach for global stabilization of inherently nonlinear systems via output feedback. Int. J. Robust Nonlinear Control 17 (2010), 7, 605-629. DOI 10.1002/rnc.1139 | MR 2314806
[19] Qian, C., Du, H., Li, S.: Global stabilization via sampled-data output feedback for a class of linearly uncontrollable and unobservable system. IEEE Trans. Automat. Control 61 (2016), 4088-4093. DOI  | MR 3582522
[20] Qian, C., Lin, W.: Non-smooth stabilizers for nonlinear systems with uncontrollable unstable linearization. In: Proc. 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), Sydney, NSW, 2 (2000), pp. 1655-1660. MR 2007048
[21] Qian, C., Lin, W.: A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Automat. Control 46 (2001), 7, 1061-1079. DOI  | MR 1842139 | Zbl 1012.93053
[22] Qian, C., Lin, W.: Recursive observer design, homogeneous approximation, and nonsmooth output feedback stabilization of nonlinear systems. IEEE Trans. Automat. Control 51 (2006), 9, 1457-1471. DOI 10.1109/TAC.2006.880955 | MR 2259799
[23] Rosier, L.: Homogeneous Lyapunov function for homogeneous continuous vector field. Systems Control Lett. 19 (1992), 6, 467-473. DOI  | MR 1195304 | Zbl 0762.34032
[24] Shen, Y., Li, F., Zhang, D., Wang, Y. W., Liu, Y.: Event-triggered output feedback $H_\infty$ control for networked control systems. Int. J. Robust Nonlinear Control 29 (2019), 1, 166-179. DOI  | MR 3886115
[25] Seyboth, G. S., Dimarogonas, D. V., Johansson, K. H.: Event-based broadcasting for multi-agent average consensus. Automatica 49 (2013), 1, 245-252. DOI  | MR 2999968 | Zbl 1257.93066
[26] Su, Z., Qian, C., Hao, Y., Zhao, M.: Global stabilization via sampled-data output feedback for large-scale systems interconnected by inherent nonlinearities. Automatica 92 (2018), 254-258. DOI  | MR 3784300
[27] Zhai, J., Qian, C.: Global control of nonlinear systems with uncertain output function using homogeneous domination approach. Int. J. Robust Nonlinear Control 22 (2012), 14, 1543-1561. DOI 10.1002/rnc.1765 | MR 2970951
[28] Zhang, J., Feng, G.: Event-driven observer-based output feedback control for linear systems. Automatica 50 (2014), 7, 1852-1859. DOI  | MR 3230886
[29] Zhang, X. M., Han, Q. L.: Event-based $h_{\*}$filtering for sampled-data systems. Automatica 51 (2015), 55-69. DOI  | MR 3284753
[30] Zhang, X., Han, Q., Ge, X., Ding, L.: Resilient control design based on a sampled-data model for a class of networked control systems under denial-of-service attacks. IEEE Trans. Cybernet. 50 (2020), 8, 3616-3626. DOI  | MR 4144008
[31] Zhang, X., Han, Q., Ge, X., Ding, D., Ding, L., Yue, D., Peng, C.: Networked control systems:a survey of trends and techniques. IEEE/CAA J. Automat. Sinica 7 (2020), 1, 1-17. DOI  | MR 4058068
[32] Zhang, D., Han, Q., Zhang, X.: Network-based modeling and proportional-integral control for direct-drive-wheel systems in wireless network environments. IEEE Trans. Cybernet. 50 (2020), 6, 2462-2474. DOI 
[33] Zhang, D., Shen, Y.: Continuous sampled-data observer design for nonlinear systems with time delay larger or smaller than the sampling period. IEEE Trans. Automat. Control 62 (2017), 11, 5822-5829. DOI  | MR 3730959
[34] Yue, D., Tian, E., Han, Q.: Delay system method for designing event-triggered controllers of networked control systems. IEEE Trans. Automat. Control 58 (2013), 2, 475-481. DOI  | MR 3023940
Partner of
EuDML logo