Previous |  Up |  Next

Article

Keywords:
space robot; underactuated; actuator gain fault; fault observer; fault-tolerant
Summary:
An adaptive sliding mode fault-tolerant controller based on fault observer is proposed for the space robots with joint actuator gain faults. Firstly, the dynamic model of the underactuated space robot is deduced combining conservation law of linear momentum with Lagrange method. Then, the dynamic model of the manipulator joints is obtained by using the mathematical operation of the block matrices, hence the measurement of the angular acceleration of the base attitude can be omitted. Subsequently, a fault observer which can accurately estimate the gain faults is designed, and the estimated results are fed back to the adaptive sliding mode fault-tolerant controller. It is proved that the proposed control algorithm can guarantee the global asymptotic stability of the closed-loop system through the Lyapunov theorem. The simulation results authenticate the effectiveness and feasibility of the control strategy and observation scheme.
References:
[1] Angel, L., Viala, J.: Tracking control for robotic manipulators using fractional order controllers with computed torque control. IEEE Latin America Trans. 16 (2018), 1884-1891. DOI 
[2] Chutiphon, P.: Robust optimal PID controller design for attitude stabilization of flexible spacecraft. Kybernetika 54 (2018), 1049-1070. DOI  | MR 3893135
[3] Chutiphon, P., Anuchit, J.: Disturbance observer-based second order sliding mode attitude tracking control for flexible spacecraft. Kybernetika 53 (2017), 653-678. DOI  | MR 3730257
[4] Fan, H. J., Liu, B., Wang, W., Wen, C. Y.: Adaptive fault-tolerant stabilization for nonlinear systems with Markovian jumping actuator failures and stochastic noises. Automatica 51 (2015), 200-209. DOI  | MR 3284769
[5] Guo, T., Chen, W. S.: Adaptive fuzzy decentralised fault-tolerant control for uncertain non-linear large-scale systems with unknown time-delay. IET Control Theory Appl. 10 (2016), 3427-3446. DOI  | MR 3643227
[6] He, W., Dong, Y. T.: Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Trans. Neural Networks Learning Systems 29 (2018), 1174-1186. DOI 
[7] He, W., He, X., Zou, M., Li, H.: PDE model-based boundary control design for a flexible robotic manipulator with input backlash. IEEE Trans. Control Systems Technol. 27 (2019), 790-797. DOI 
[8] Hu, Q. L., Huo, X., Xiao, B.: Reaction wheel fault tolerant control for spacecraft attitude stabilization with finite-time convergence. Int. J. Robust Nonlinear Control 23 (2013), 1737-1752. DOI  | MR 3111507
[9] Q., X., Huang, Chen, L.: Anti-dead-zone control based on dynamic surface for space robot with flexible links and elastic base. J. Harbin Engineering University 40 (2019), 2063-2069.
[10] Li, M., Chen, Y.: Robust adaptive sliding mode control for switched networked control systems with disturbance and faults. IEEE Trans. Industrial Inform. 15 (2019), 193-204. DOI 
[11] Lu, Y. B., Huang, P. F., Meng, Z. J.: Adaptive anti-windup control of post-capture combination via tethered space robot. Advances Space Res. 64 (2019), 847-860. DOI 
[12] Ma, H., Zhou, Q., Bai, L., liang, H. J.: Observer-based adaptive fuzzy fault-tolerant control for stochastic nonstrict-feedback nonlinear systems with input quantization. IEEE Trans. Systems Man Cybernet.: Systems 49 (2019), 287-298. DOI 
[13] Meng, D. S., She, Y., Xu, W. F, Lu, W. N, Liang, B.: Dynamic modeling and vibration characteristics analysis of flexible-link and flexible-joint space manipulator. Multibody System Dynamics 43 (2018), 321-347. DOI  | MR 3825644
[14] Moosavian, S. A. A., Papadopoulos, E.: Explicit dynamics of space free-flyers with multiple manipulators via spacemaple. Advanced Robotics 18 (2004), 223-244. DOI 
[15] Ni, Z. Y., Liu, J. G., Wu, Z. G., Shen, X. H.: Identification of the state-space model and payload mass parameter of a flexible space manipulator using a recursive subspace tracking method. Chinese J. Aeronautics 32 (2019), 513-530. DOI 
[16] Papadopoulos, E., Dubowsky, S.: On the nature of control algorithms for free-floating space manipulators. IEEE Trans. Robotics Automation 7 (1991), 750-758. DOI 
[17] Pisculli, A., Felicetti, L., Gasbarri, P., Palmerini, G. B., Sabatini, M.: A reaction-null/Jacobian transpose control strategy with gravity gradient compensation for on-orbit space manipulators. Aerospace Science Technol. 38 (2014), 30-40. DOI 
[18] Shen, Q. K., Jiang, B., Vincent, C.: Fault-tolerant control for T-S fuzzy systems with application to near-space hypersonic vehicle with actuator faults. IEEE Trans. Fuzzy Systems 20 (2012), 652-665. DOI 
[19] Shtessel, Y., Taleb, M., Plestan, F.: A novel adaptive-gain supertwisting sliding mode controller: methodology and application. Automatica 48 (2012), 759-769. DOI  | MR 2912798 | Zbl 1246.93028
[20] Slotine, J., Li, W.: On the adaptive control of robot manipulators. Int. J. Robotics Research 6 (1987), 49-59. DOI  | MR 1021073
[21] Tong, S. C., Huo, B. Y., Li, Y. M.: Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures. IEEE Trans. Fuzzy System 22 (2014), 1-15. DOI 
[22] Umetani, Y., Yoshida, K.: Continuous path control of space manipulators mounted on OMV. Acta Astronautica 15 (1987), 981-986. DOI 
[23] Umetani, Y., Yoshida, K.: Resolved motion rate control of space manipulators with generalized Jacobian matrix. IEEE Trans. Robotics Automat. 5 (1989), 303-314. DOI 10.1109/70.34766
[24] Vafa, Z., Dubowsky, S.: On the Dynamics of Space Manipulators Using the Virtual Manipulator, with Applications to Path Planning. J. Astronautical Sci. 38 (1990), 441-472.
[25] Vafa, Z., Dubowsky, S.: The Kinematics and Dynamics of Space Manipulators: The Virtual Manipulator Approach. Int. J. Robotics Res. 9 (1990), 3-21. DOI 
[26] Yu, X. Y., Chen, L.: Observer Based Robust Control and Vibration Control for a Free-floating flexible Space Manipulator. J. Mechanical Engrg. 52 (2016), 28-35. DOI 
[27] Zhang, Q., Ji, L., Zhou, D. S., Wei, X. P.: Nonholonomic motion planning for minimizing base disturbances of space manipulators based on multi-swarm PSO. Robotica 35 (2017), 861-875. DOI 
[28] Zhao, J. L., Yan, S. Z., Wu, J. N.: Analysis of parameter sensitivity of space manipulator with harmonic drive based on the revised response surface method. Acta Astronautica 98 (2014), 86-96. DOI 10.1016/j.actaastro.2014.01.017
[29] Zheng, Z. W., Sun, L., Xie, L. H.: Error-constrained LOS path following of a surface vessel with actuator saturation and faults. IEEE Trans. Systems Man Cybernet.: Systems 48 (2018), 1794-1805. DOI  | MR 3732980
Partner of
EuDML logo