[1] Angel, L., Viala, J.:
Tracking control for robotic manipulators using fractional order controllers with computed torque control. IEEE Latin America Trans. 16 (2018), 1884-1891.
DOI
[2] Chutiphon, P.:
Robust optimal PID controller design for attitude stabilization of flexible spacecraft. Kybernetika 54 (2018), 1049-1070.
DOI |
MR 3893135
[3] Chutiphon, P., Anuchit, J.:
Disturbance observer-based second order sliding mode attitude tracking control for flexible spacecraft. Kybernetika 53 (2017), 653-678.
DOI |
MR 3730257
[4] Fan, H. J., Liu, B., Wang, W., Wen, C. Y.:
Adaptive fault-tolerant stabilization for nonlinear systems with Markovian jumping actuator failures and stochastic noises. Automatica 51 (2015), 200-209.
DOI |
MR 3284769
[5] Guo, T., Chen, W. S.:
Adaptive fuzzy decentralised fault-tolerant control for uncertain non-linear large-scale systems with unknown time-delay. IET Control Theory Appl. 10 (2016), 3427-3446.
DOI |
MR 3643227
[6] He, W., Dong, Y. T.:
Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Trans. Neural Networks Learning Systems 29 (2018), 1174-1186.
DOI
[7] He, W., He, X., Zou, M., Li, H.:
PDE model-based boundary control design for a flexible robotic manipulator with input backlash. IEEE Trans. Control Systems Technol. 27 (2019), 790-797.
DOI
[8] Hu, Q. L., Huo, X., Xiao, B.:
Reaction wheel fault tolerant control for spacecraft attitude stabilization with finite-time convergence. Int. J. Robust Nonlinear Control 23 (2013), 1737-1752.
DOI |
MR 3111507
[9] Q., X., Huang, Chen, L.: Anti-dead-zone control based on dynamic surface for space robot with flexible links and elastic base. J. Harbin Engineering University 40 (2019), 2063-2069.
[10] Li, M., Chen, Y.:
Robust adaptive sliding mode control for switched networked control systems with disturbance and faults. IEEE Trans. Industrial Inform. 15 (2019), 193-204.
DOI
[11] Lu, Y. B., Huang, P. F., Meng, Z. J.:
Adaptive anti-windup control of post-capture combination via tethered space robot. Advances Space Res. 64 (2019), 847-860.
DOI
[12] Ma, H., Zhou, Q., Bai, L., liang, H. J.:
Observer-based adaptive fuzzy fault-tolerant control for stochastic nonstrict-feedback nonlinear systems with input quantization. IEEE Trans. Systems Man Cybernet.: Systems 49 (2019), 287-298.
DOI
[13] Meng, D. S., She, Y., Xu, W. F, Lu, W. N, Liang, B.:
Dynamic modeling and vibration characteristics analysis of flexible-link and flexible-joint space manipulator. Multibody System Dynamics 43 (2018), 321-347.
DOI |
MR 3825644
[14] Moosavian, S. A. A., Papadopoulos, E.:
Explicit dynamics of space free-flyers with multiple manipulators via spacemaple. Advanced Robotics 18 (2004), 223-244.
DOI
[15] Ni, Z. Y., Liu, J. G., Wu, Z. G., Shen, X. H.:
Identification of the state-space model and payload mass parameter of a flexible space manipulator using a recursive subspace tracking method. Chinese J. Aeronautics 32 (2019), 513-530.
DOI
[16] Papadopoulos, E., Dubowsky, S.:
On the nature of control algorithms for free-floating space manipulators. IEEE Trans. Robotics Automation 7 (1991), 750-758.
DOI
[17] Pisculli, A., Felicetti, L., Gasbarri, P., Palmerini, G. B., Sabatini, M.:
A reaction-null/Jacobian transpose control strategy with gravity gradient compensation for on-orbit space manipulators. Aerospace Science Technol. 38 (2014), 30-40.
DOI
[18] Shen, Q. K., Jiang, B., Vincent, C.:
Fault-tolerant control for T-S fuzzy systems with application to near-space hypersonic vehicle with actuator faults. IEEE Trans. Fuzzy Systems 20 (2012), 652-665.
DOI
[19] Shtessel, Y., Taleb, M., Plestan, F.:
A novel adaptive-gain supertwisting sliding mode controller: methodology and application. Automatica 48 (2012), 759-769.
DOI |
MR 2912798 |
Zbl 1246.93028
[20] Slotine, J., Li, W.:
On the adaptive control of robot manipulators. Int. J. Robotics Research 6 (1987), 49-59.
DOI |
MR 1021073
[21] Tong, S. C., Huo, B. Y., Li, Y. M.:
Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures. IEEE Trans. Fuzzy System 22 (2014), 1-15.
DOI
[22] Umetani, Y., Yoshida, K.:
Continuous path control of space manipulators mounted on OMV. Acta Astronautica 15 (1987), 981-986.
DOI
[23] Umetani, Y., Yoshida, K.:
Resolved motion rate control of space manipulators with generalized Jacobian matrix. IEEE Trans. Robotics Automat. 5 (1989), 303-314.
DOI 10.1109/70.34766
[24] Vafa, Z., Dubowsky, S.: On the Dynamics of Space Manipulators Using the Virtual Manipulator, with Applications to Path Planning. J. Astronautical Sci. 38 (1990), 441-472.
[25] Vafa, Z., Dubowsky, S.:
The Kinematics and Dynamics of Space Manipulators: The Virtual Manipulator Approach. Int. J. Robotics Res. 9 (1990), 3-21.
DOI
[26] Yu, X. Y., Chen, L.:
Observer Based Robust Control and Vibration Control for a Free-floating flexible Space Manipulator. J. Mechanical Engrg. 52 (2016), 28-35.
DOI
[27] Zhang, Q., Ji, L., Zhou, D. S., Wei, X. P.:
Nonholonomic motion planning for minimizing base disturbances of space manipulators based on multi-swarm PSO. Robotica 35 (2017), 861-875.
DOI
[28] Zhao, J. L., Yan, S. Z., Wu, J. N.:
Analysis of parameter sensitivity of space manipulator with harmonic drive based on the revised response surface method. Acta Astronautica 98 (2014), 86-96.
DOI 10.1016/j.actaastro.2014.01.017
[29] Zheng, Z. W., Sun, L., Xie, L. H.:
Error-constrained LOS path following of a surface vessel with actuator saturation and faults. IEEE Trans. Systems Man Cybernet.: Systems 48 (2018), 1794-1805.
DOI |
MR 3732980