Previous |  Up |  Next

Article

Keywords:
hyperspace; continuum; containment hyperspace; aposyndesis; finite graph; Peano continuum; contractibility
Summary:
Let $X$ be a continuum and $n$ a positive integer. Let $C_n(X)$ be the hyperspace of all nonempty closed subsets of $X$ with at most $n$ components, endowed with the Hausdorff metric. For $K$ compact subset of $X$, define the hyperspace ${C_n}_K(X)=\{A\in C_n(X)\colon K\subset A\}$. In this paper, we consider the hyperspace $C_K^n(X)=C_n(X)/{C_n}_K(X)$, which can be a tool to study the space $C_n(X)$. We study this hyperspace in the class of finite graphs and in general, we prove some properties such as: aposyndesis, local connectedness, arcwise disconnectedness, and contractibility.
References:
[1] Anaya J. G., Castañeda-Alvarado E., Fuentes-Montes de Oca A., Orozco-Zitli F.: Making holes in the cone, suspension and hyperspaces of some continua. Comment. Math. Univ. Carolin. 59 (2018), no. 3, 343–364. MR 3861557
[2] Baik B. S., Hur K., Rhee C. J.: $R^i$-sets and contractibility. J. Korean Math. Soc. 34 (1997), no. 2, 309–319. MR 1455544
[3] Bennett D. E.: Aposyndetic properties of unicoherent continua. Pacific J. Math. 37 (1971), 585–589. DOI 10.2140/pjm.1971.37.585 | MR 0305370
[4] Camargo J., Macías S.: Quotients of $n$-fold hyperspaces. Topology Appl. 197 (2016), 154–166. MR 3426913
[5] Castañeda-Alvarado E., Mondragón R. C., Ordoñez N., Orozco-Zitli F.: The hyperspace $F^K_n(X)$. Bull. Iranian Math. Soc. 47 (2021), no. 3, 659–678. MR 4249170
[6] Charatonik J. J.: Monotone mappings and unicoherence at subcontinua. Topology Appl. 33 (1989), no. 2, 209–215. DOI 10.1016/S0166-8641(89)80009-4 | MR 1020282
[7] Charatonik J. J.: Recent research in hyperspace theory. Extracta Math. 18 (2003), no. 2, 235–262. MR 2002449
[8] Duda R.: On the hyperspaces of subcontinua of a finite graph. I. Fund. Math. 62 (1968), 265–286. DOI 10.4064/fm-62-3-265-286 | MR 0236881
[9] Escobedo R., López M. de J., Macías S.: On the hyperspace suspension of a continuum. Topology Appl. 138 (2004), no. 1–3, 109–124. DOI 10.1016/j.topol.2003.08.024 | MR 2035475
[10] Hernández-Gutiérrez R., Martínez-de-la-Vega V.: Rigidity of symmetric products. Topology Appl. 160 (2013), no. 13, 1577–1587. DOI 10.1016/j.topol.2013.06.001 | MR 3091331
[11] Illanes Mejía A.: Hiperespacios de continuos. Aportaciones Matemáticas, Serie Textos, 28, Sociedad Matemática Mexicana, México, 2004 (Spanish). MR 2111741
[12] Illanes A., Nadler S. B., Jr.: Hyperspaces. Fundamentals and Recent Advances, Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, New York, 1999. MR 1670250
[13] Macías J. C.: On the $n$-fold pseudo-hyperspace suspension of continua. Glas. Mat. Ser. III 43(63) (2008), 439–449. DOI 10.3336/gm.43.2.14 | MR 2460710
[14] Macías S.: Hyperspaces and cones. Proc. Amer. Math. Soc. 125 (1997), no. 10, 3069–3073. DOI 10.1090/S0002-9939-97-04175-0 | MR 1425134
[15] Macías S.: On the hyperspaces $\mathscr{C}_n(X)$ of a continuum $X$. II. Proc. of the 2000 Topology and Dynamics Conf., San Antonio, Topology Proc. 25 (2000), 255–276. MR 1875596
[16] Macías S.: On the hyperspaces $\mathscr{C}_n(X)$ of a continuum $X$. Topology Appl. 109 (2001), no. 2, 237–256. DOI 10.1016/S0166-8641(99)00151-0 | MR 1806337
[17] Macías S.: On the $n$-fold hyperspace suspension of continua. Topology Appl. 138 (2004), no. 1–3, 125–138. DOI 10.1016/j.topol.2003.08.023 | MR 2035476
[18] Macías S.: On the $n$-fold hyperspace suspension of continua. II. Glas. Mat. Ser. III 41(61) (2006), no. 2, 335–343. MR 2282743
[19] Martínez-de-la-Vega V.: Dimension of $n$-fold hyperspaces of graphs. Houston J. Math. 32 (2006), no. 3, 783–799. MR 2247910
[20] Nadler S. B., Jr.: Hyperspaces of Sets. Monographs and Textbooks in Pure and Applied Mathematics, 49, Marcel Dekker, New York, 1978. MR 0500811 | Zbl 1125.54001
[21] Nadler S. B., Jr.: A fixed point theorem for hyperspaces suspensions. Houston J. Math. 5 (1979), no. 1, 125–132. MR 0533646
[22] Nadler S. B., Jr.: Continuum Theory. An Introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, New York, 1992. MR 1192552 | Zbl 0819.54015
[23] Nadler S. B., Jr.: Dimension Theory, An Introduction with Exercises. Aportaciones Matemáticas, Serie Textos, 18, Sociedad Matemática Mexicana, México, 2002. MR 1925171
Partner of
EuDML logo