[2] Alexandrov A. D.:
Uniqueness theorems for surfaces in the large I. Vestnik Leiningrad Univ. 11 (1956), no. 19, 5–17 (Russian).
MR 0086338
[4] Alías L. J., Dajczer M., Ripoll J. R.:
A Bernstein-type theorem for Riemannian manifolds with a Killing field. Ann. Global Anal. Geom. 31 (2007), no. 4, 363–373.
DOI 10.1007/s10455-006-9045-5 |
MR 2325221
[6] Bakry D., Émery M.:
Diffusions hypercontractives. Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, 1985, pages 177–206 (French).
MR 0889476
[7] Barbosa J. L. M., do Carmo M., Eschenburg J.:
Stability of hypersurfaces with constant mean curvature in Riemannian manifolds. Math. Z. 197 (1988), no. 1, 123–138.
DOI 10.1007/BF01161634 |
MR 0917854
[8] Batista M., Cavalcante M. P., Pyo J.:
Some isoperimetric inequalities and eigenvalue estimates in weighted manifolds. J. Math. Anal. Appl. 419 (2014), no. 1, 617–626.
DOI 10.1016/j.jmaa.2014.04.074 |
MR 3217170
[9] Bernstein S.:
Sur les surfaces définies au moyen de leur courboure moyenne ou totale. Ann. Sci. École Norm. Sup. 27 (1910), no. 3, 233–256 (French).
DOI 10.24033/asens.621 |
MR 1509123
[11] Caminha A., de Lima H. F.:
Complete vertical graphs with constant mean curvature in semi-Riemannian warped products. Bull. Belg. Math. Soc. Simon Stevin 16 (2009), no. 1, 91–105.
DOI 10.36045/bbms/1235574194 |
MR 2498961
[12] Cañete A., Rosales C.:
Compact stable hypersurfaces with free boundary in convex solid cones with homogeneous densities. Cal. Var. Partial Differential Equations 51 (2014), no. 3–4, 887–913.
DOI 10.1007/s00526-013-0699-0 |
MR 3268875
[14] Cavalcante M. P., de Lima H. F., Santos M. S.:
On Bernstein-type properties of complete hypersurfaces in weighted warped products. Ann. Mat. Pura Appl. (4) 195 (2016), no. 2, 309–322.
DOI 10.1007/s10231-014-0464-9 |
MR 3476675
[17] de Lima H. F., de Lima J. R., Velásquez M. A. L.:
On the nullity of conformal Killing graphs in foliated Riemannian spaces. Aequationes Math. 87 (2014), no. 3, 285–299.
MR 3266117
[18] de Lima H. F., de Lima J. R., Velásquez M. A. L.:
Entire conformal Killing graphs in foliated Riemannian spaces. J. Geom. Anal. 25 (2015), no. 1, 171–188.
DOI 10.1007/s12220-013-9418-5 |
MR 3299274
[19] de Lima H. F., Oliveira A. M., Velásquez M. A. L.:
On the uniqueness of complete two-sided hypersurfaces immersed in a class of weighted warped products. J. Geom. Anal. 27 (2017), no. 3, 2278–2301.
DOI 10.1007/s12220-017-9761-z |
MR 3667431
[20] Fang F., Li X.-D., Zhang Z.:
Two generalizations of Cheeger–Gromoll splitting theorem via Bakry–Émery Ricci curvature. Ann. Inst. Fourier (Grenoble) 59 (2009), no. 2, 563–573.
DOI 10.5802/aif.2440 |
MR 2521428
[24] Jellett J. J.: Sur la surface dont la courbure moyenne est constante. J. Math. Pures Appl. 18 (1853), 163–167 (French).
[25] Lichnerowicz A.:
Variétés Riemanniennes à tenseur C non négatif. C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A650–A653 (French).
MR 0268812
[26] Lichnerowicz A.:
Variétés Kählériennes à première classe de Chern non negative et variétés Riemanniennes à courbure de Ricci généralisée non negative. J. Differential Geometry 6 (1971/72), 47–94 (French).
MR 0300228
[27] Liebmann H.: Eine neue Eigenschaft der Kugel. Nachr. Kg. Ges. Wiss. Götingen, Math. Phys. Kl. (1899), 44–55 (German).
[28] McGonagle M., Ross J.:
The hyperplane is the only stable, smooth solution to the isoperimetric problem in Gaussian space. Geom. Dedicata 178 (2015), 277–296.
DOI 10.1007/s10711-015-0057-9 |
MR 3397495
[30] O'Neill B.:
Semi-Riemannian Geometry. With Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, New York, 1983.
MR 0719023
[32] Rosales C., Ca nete A., Bayle V., Morgan F.:
On the isoperimetric problem in Euclidean space with density. Calc. Var. Partial Differential Equations 31 (2008), no. 1, 27–46.
DOI 10.1007/s00526-007-0104-y |
MR 2342613
[33] Wei G., Wylie W.:
Comparison geometry for the Bakry–Émery Ricci tensor. J. Differential Geom. 83 (2009), no. 2, 377–405.
MR 2577473
[34] Yau S. T.:
Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana Univ. Math. J. 25 (1976), no. 7, 659–670.
DOI 10.1512/iumj.1976.25.25051 |
MR 0417452