Previous |  Up |  Next

Article

Keywords:
oscillation; non-oscillation; neutral; delay; Lebesgue's dominated convergence theorem
Summary:
In this work, we present necessary and sufficient conditions for oscillation of all solutions of a second-order functional differential equation of type $$ (r(t)(z'(t))^\gamma )' +\sum _{i=1}^m q_i(t)x^{\alpha _i}(\sigma _i(t))=0, \quad t\geq t_0, $$ where $z(t)=x(t)+p(t)x(\tau (t))$. Under the assumption $\int ^{\infty }(r(\eta ))^{-1/\gamma } {\rm d}\eta =\infty $, we consider two cases when $\gamma >\alpha _i$ and $\gamma <\alpha _i$. Our main tool is Lebesgue's dominated convergence theorem. Finally, we provide examples illustrating our results and state an open problem.
References:
[1] Agarwal, R. P., Bohner, M., Li, T., Zhang, C.: Oscillation of second-order differential equations with a sublinear neutral term. Carpathian J. Math. 30 (2014), 1-6. DOI 10.37193/CJM.2014.01.01 | MR 3244084 | Zbl 1324.34078
[2] Agarwal, R. P., Bohner, M., Li, T., Zhang, C.: Oscillation of second-order Emden-Fowler neutral delay differential equations. Ann. Mat. Pura Appl. (4) 193 (2014), 1861-1875. DOI 10.1007/s10231-013-0361-7 | MR 3275266 | Zbl 1308.34083
[3] Agarwal, R. P., Bohner, M., Li, T., Zhang, C.: Even-order half-linear advanced differential equations: Improved criteria in oscillatory and asymptotic properties. Appl. Math. Comput. 266 (2015), 481-490. DOI 10.1016/j.amc.2015.05.008 | MR 3377575 | Zbl 1410.34191
[4] Agarwal, R. P., Zhang, C., Li, T.: Some remarks on oscillation of second order neutral differential equations. Appl. Math. Comput. 274 (2016), 178-181. DOI 10.1016/j.amc.2015.10.089 | MR 3433126 | Zbl 1410.34192
[5] Baculíková, B., Džurina, J.: Oscillation theorems for second order neutral differential equations. Comput. Math. Appl. 61 (2011), 94-99. DOI 10.1016/j.camwa.2010.10.035 | MR 2739438 | Zbl 1207.34081
[6] Baculíková, B., Džurina, J.: Oscillation theorems for second-order nonlinear neutral differential equations. Comput. Math. Appl. 62 (2011), 4472-4478. DOI 10.1016/j.camwa.2011.10.024 | MR 2855589 | Zbl 1236.34092
[7] Baculíková, B., Li, T., Džurina, J.: Oscillation theorems for second order neutral differential equations. Electron. J. Qual. Theory Differ. Equ. 2011 (2011), Article ID 74, 13 pages. DOI 10.14232/ejqtde.2011.1.74 | MR 2838502 | Zbl 1340.34238
[8] Bohner, M., Grace, S. R., Jadlovská, I.: Oscillation criteria for second-order neutral delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2017 (2017), Article ID 60, 12 pages. DOI 10.14232/ejqtde.2017.1.60 | MR 3690229 | Zbl 1413.34213
[9] Brands, J. J. A. M.: Oscillation theorems for second-order functional differential equations. J. Math. Anal. Appl. 63 (1978), 54-64. DOI 10.1016/0022-247X(78)90104-X | MR 0470416 | Zbl 0384.34049
[10] Chatzarakis, G. E., Džurina, J., Jadlovská, I.: New oscillation criteria for second-order half-linear advanced differential equations. Appl. Math. Comput. 347 (2019), 404-416. DOI 10.1016/j.amc.2018.10.091 | MR 3880830 | Zbl 1428.34088
[11] Chatzarakis, G. E., Grace, S. R., Jadlovská, I., Li, T., Tunç, E.: Oscillation criteria for third-order Emden-Fowler differential equations with unbounded neutral coefficients. Complexity 2019 (2019), Article ID 5691758, 7 pages. DOI 10.1155/2019/5691758 | Zbl 1429.34071
[12] Chatzarakis, G. E., Jadlovská, I.: Improved oscillation results for second-order half-linear delay differential equations. Hacet. J. Math. Stat. 48 (2019), 170-179. DOI 10.15672/hjms.2017.522 | MR 3976169
[13] Džurina, J.: Oscillation theorems for second order advanced neutral differential equations. Tatra Mt. Math. Publ. 48 (2011), 61-71. DOI 10.2478/v10127-011-0006-4 | MR 2841106 | Zbl 1265.34232
[14] Džurina, J., Grace, S. R., Jadlovská, I., Li, T.: Oscillation criteria for second-order Emden-Fowler delay differential equations with a sublinear neutral term. Math. Nachr. 293 (2020), 910-922. DOI 10.1002/mana.201800196 | MR 4100546 | Zbl 07206438
[15] Grace, S. R., Džurina, J., Jadlovská, I., Li, T.: An improved approach for studying oscillation of second-order neutral delay differential equations. J. Inequal. Appl. 2018 (2018), Article ID 193, 11 pages. DOI 10.1186/s13660-018-1767-y | MR 3833834
[16] Hale, J.: Theory of Functional Differential Equations. Applied Mathematical Sciences 3. Springer, New York (1977). DOI 10.1007/978-1-4612-9892-2_3 | MR 0508721 | Zbl 0352.34001
[17] Karpuz, B., Santra, S. S.: Oscillation theorems for second-order nonlinear delay differential equations of neutral type. Hacet. J. Math. Stat 48 (2019), 633-643. DOI 10.15672/HJMS.2017.542 | MR 3974570
[18] Li, H., Zhao, Y., Han, Z.: New oscillation criterion for Emden-Fowler type nonlinear neutral delay differential equations. J. Appl. Math. Comput. 60 (2019), 191-200. DOI 10.1007/s12190-018-1208-6 | MR 3969079 | Zbl 1422.34194
[19] Li, Q., Wang, R., Chen, F., Li, T.: Oscillation of second-order nonlinear delay differential equations with nonpositive neutral coefficients. Adv. Difference Equ. 2015 (2015), Article ID 35, 7 pages. DOI 10.1186/s13662-015-0377-y | MR 3304960 | Zbl 1350.34053
[20] Li, T., Rogovchenko, Y. V.: Oscillation theorems for second-order nonlinear neutral delay differential equations. Abstr. Appl. Anal. 2014 (2014), Article ID 594190, 5 pages. DOI 10.1155/2014/594190 | MR 3226209 | Zbl 07022675
[21] Li, T., Rogovchenko, Y. V.: Oscillation of second-order neutral differential equations. Math. Nachr. 288 (2015), 1150-1162. DOI 10.1002/mana.201300029 | MR 3367905 | Zbl 1342.34090
[22] Li, T., Rogovchenko, Y. V.: Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations. Monatsh. Math. 184 (2017), 489-500. DOI 10.1007/s00605-017-1039-9 | MR 3709308 | Zbl 1386.34118
[23] Pinelas, S., Santra, S. S.: Necessary and sufficient condition for oscillation of nonlinear neutral first-order differential equations with several delays. J. Fixed Point Theory Appl. 20 (2018), Article ID 27, 13 pages. DOI 10.1007/s11784-018-0506-9 | MR 3761383 | Zbl 1387.34095
[24] Qian, Y., Xu, R.: Some new oscillation criteria for higher-order quasi-linear neutral delay differential equations. Differ. Equ. Appl. 3 (2011), 323-335. DOI 10.7153/dea-03-20 | MR 2856412 | Zbl 1235.34184
[25] Santra, S. S.: Existence of positive solution and new oscillation criteria for nonlinear first-order neutral delay differential equations. Differ. Equ. Appl. 8 (2016), 33-51. DOI 10.7153/dea-08-03 | MR 3462235 | Zbl 1337.34071
[26] Santra, S. S.: Oscillation analysis for nonlinear neutral differential equations of second order with several delays. Mathematica 59 (2017), 111-123. MR 3937284 | Zbl 07101431
[27] Santra, S. S.: Oscillation analysis for nonlinear neutral differential equations of second order with several delays and forcing term. Mathematica 61 (2019), 63-78. DOI 10.24193/mathcluj.2019.1.06 | MR 3938805 | Zbl 07101459
[28] Tripathy, A. K., Panda, B., Sethi, A. K.: On oscillatory nonlinear second order neutral delay differential equations. Differ. Equ. Appl. 8 (2016), 247-258. DOI 10.7153/dea-08-12 | MR 3488819 | Zbl 1341.34072
[29] Wong, J. S. W.: Necessary and sufficient conditions for oscillation of second order neutral differential equations. J. Math. Anal. Appl. 252 (2000), 342-352. DOI 10.1006/jmaa.2000.7063 | MR 1797859 | Zbl 0976.34057
[30] Zhang, C., Agarwal, R. P., Bohner, M., Li, T.: Oscillation of second-order nonlinear neutral dynamic equations with noncanonical operators. Bull. Malays. Math. Sci. Soc. (2) 38 (2015), 761-778. DOI 10.1007/s40840-014-0048-2 | MR 3323739 | Zbl 1318.34124
Partner of
EuDML logo