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Abstract. In this work, we present necessary and sufficient conditions for oscillation of
all solutions of a second-order functional differential equation of type

(r(t)(z′(t))γ)′ +
m∑

i=1

qi(t)x
αi(σi(t)) = 0, t > t0,

where z(t) = x(t)+ p(t)x(τ (t)). Under the assumption
∫
∞
(r(η))−1/γ dη =∞, we consider

two cases when γ > αi and γ < αi. Our main tool is Lebesgue’s dominated convergence
theorem. Finally, we provide examples illustrating our results and state an open problem.

Keywords: oscillation; non-oscillation; neutral; delay; Lebesgue’s dominated convergence
theorem

MSC 2020 : 34C10, 34K11

1. Introduction

In this article we consider the neutral differential equation

(1.1) (r(t)(z′(t))γ)′ +

m
∑

i=1

qi(t)x
αi (σi(t)) = 0, z(t) = x(t) + p(t)x(τ(t)), t > t0,

where γ and αi are the quotients of odd positive integers, and the functions p, qi, r,

σi, τ are continuous such that

(A1) σi ∈ C([0,∞),R+), τ ∈ C2([0,∞),R+), σi(t) < t, τ(t) < t, lim
t→∞

σi(t) = ∞,

lim
t→∞

τ(t) = ∞;
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(A2) r ∈ C1([0,∞),R+), qi ∈ C([0,∞),R+); 0 < r(t), 0 6 qi(t) for all t > 0 and

i = 1, 2, . . . ,m;
∑

qi(t) is not identically zero in any interval [b,∞);

(A3)
∫

∞

0
r−1/γ(s) ds = ∞, Π(t) =

∫ t

0
r−1/γ(η) dη;

(A4) −1 < −p0 6 p(t) 6 0 for t > t0;

(A5) there exists a differentiable function σ0(t) satisfying the properties 0 < σ0(t) =

min{σi(t) : t > t∗ > t0} and σ′

0(t) > α for t > t∗ > t0, α > 0, i = 1, 2, . . . ,m.

In 1978, Brands has proved that for bounded delays, the solutions of

x′′(t) + q(t)x(t − σ(t)) = 0

are oscillatory if and only if the solutions of x′′(t) + q(t)x(t) = 0 are oscillatory

(see [9]). In [10], [12] Chatzarakis et al. have considered a more general second-order

half-linear differential equation of the form

(1.2) (r(x′)α)′(t) + q(t)xα(σ(t)) = 0,

and established new oscillation criteria for (1.2) when

lim
t→∞

Π(t) = ∞ and lim
t→∞

Π(t) < ∞.

Wong in [29] has obtained the necessary and sufficient conditions for oscillation of

solutions of

(x(t) + px(t− τ))′′ + q(t)f(x(t − σ)) = 0, −1 < p < 0,

in which the neutral coefficient and delays are constants. However, we have seen

in [5], [13] that the authors Baculíková and Džurina have studied

(1.3) (r(t)(z′(t))γ)′ + q(t)xα(σ(t)) = 0, z(t) = x(t) + p(t)x(τ(t)), t > t0,

and established sufficient conditions for oscillation of solutions of (1.3) using com-

parison techniques when γ = α = 1, 0 6 p(t) < ∞ and lim
t→∞

Π(t) = ∞. In the

same technique, Baculíková and Džurina (see [6]) obtained sufficient conditions for

oscillation of the solutions of (1.3) by considering the assumptions 0 6 p(t) < ∞

and lim
t→∞

Π(t) = ∞. In [28], Tripathy et al. have studied (1.3) and established sev-

eral sufficient conditions for oscillations of the solutions of (1.3) by considering the

assumptions lim
t→∞

Π(t) = ∞ and lim
t→∞

Π(t) < ∞ for different ranges of the neutral

coefficient p. In [8], Bohner et al. have obtained sufficient conditions for oscillation of

solutions of (1.3) when γ = α, lim
t→∞

Π(t) < ∞ and 0 6 p(t) < 1. Grace et al. in [15]
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have established sufficient conditions for the oscillation of the solutions of (1.3) when

γ = α and by considering the assumptions lim
t→∞

Π(t) < ∞, lim
t→∞

Π(t) = ∞ and

0 6 p(t) < 1. In [18], Li et al. have established sufficient conditions for oscillation of

the solutions of (1.3), under the assumptions lim
t→∞

Π(t) < ∞ and p(t) > 0. Karpuz

and Santra in [17] have obtained several sufficient conditions for the oscillatory and

asymptotic behavior of the solutions of

(r(t)(x(t) + p(t)x(τ(t)))′)′ + q(t)f(x(σ(t))) = 0,

by considering the assumptions lim
t→∞

Π(t) < ∞ and lim
t→∞

Π(t) = ∞, for different

ranges of p.

For more information on oscillation of second order neutral differential equations,

we refer the reader to [1]–[4], [7], [11], [14], [15], [19]–[27], [30] and the references

cited therein. Note that most of the works have considered sufficient conditions, and

merely a few works deals with the necessary and sufficient conditions. Hence, unlike

the above methods, the main purpose of this article is to establish conditions that

are both necessary and sufficient for oscillation of all solutions of (1.1).

Neutral differential equations have several applications in the natural sciences and

engineering. For example, they often appear in the study of distributed networks

containing lossless transmission lines (see, e.g., [16]). In this paper, we restrict our

attention to studying oscillation and non-oscillation of (1.1), which includes the class

of functional differential equations of neutral type.

By a solution to equation (1.1) we mean a function x ∈ C([Tx,∞),R), where

Tx > t0, such that rz
′ ∈ C1([Tx,∞),R) and satisfies (1.1) on the interval [Tx,∞).

A solution x of (1.1) is said to be proper if x is not identically zero eventually,

i.e. sup{|x(t)| : t > T } > 0 for all T > Tx. We assume that (1.1) possesses such

solutions. A solution of (1.1) is called oscillatory if it has arbitrarily large zeros on

[Tx,∞); otherwise, it is said to be non-oscillatory. Equation (1.1) itself is said to be

oscillatory if all of its solutions are oscillatory.

R em a r k 1.1. When the domain is not specified explicitly, all functional in-

equalities considered in this paper are assumed to hold eventually, i.e. they are sat-

isfied for all t large enough.
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2. Main results

Lemma 2.1. Assume that (A1)–(A4) hold for t > t0. If x is an eventually positive

solution of (1.1), then z satisfies one of the following two cases:

(i) z(t) < 0, z′(t) > 0, (r(z′)γ)′(t) 6 0;

(ii) z(t) > 0, z′(t) > 0, (r(z′)γ)′(t) 6 0

for t > t1.

P r o o f. Let x be an eventually positive solution. Hence, there exists a t0 > 0

such that x(t) > 0, x(τ(t)) > 0 and x(σi(t)) > 0 for all t > t0 and i = 1, 2, . . . ,m.

From (1.1) it follows that

(2.1) (r(t)(z′(t))γ)′ = −

m
∑

i=1

qi(t)x
αi (σi(t)) 6 0 for t > t0.

Therefore, r(t)(z′(t))γ is non-increasing for t > t0. Assume that r(t)(z
′(t))γ < 0 for

t > t1 > t0. Hence,

r(t)(z′(t))γ 6 r(t1)(z
′(t1))

γ < 0 for all t > t1,

that is,

z′(t) 6
(r(t1)

r(t)

)1/γ

z′(t1) for t > t1.

Using integration from t1 to t, we have

(2.2) z(t) 6 z(t1) + (r(t1))
1/γz′(t1)(Π(t) −Π(t1)) → −∞

as t → ∞ due to (A3). Now, we consider the two possibilities, namely, x is bounded

and x is unbounded.

If x is unbounded, then there exists a sequence {ηk} → ∞ as k → ∞ and x(ηk) =

sup{x(η) : η 6 ηk}. By τ(ηk) 6 ηk, we have x(τ(ηk)) 6 x(ηk) and hence

z(ηk) = x(ηk) + p(ηk)x(τ(ηk)) > (1 + p(ηk))x(ηk) > (1 − p0)x(ηk) > 0

contradicts the fact that lim
k→∞

z(ηk) = −∞. Ultimately, x is bounded. Then z is also

bounded, which is a contradiction.

Therefore r(t)(z′(t))γ > 0 for all t > t1. From r(t)(z′(t))γ > 0 and r(t) > 0, it

follows that z′(t) > 0. Then z satisfies only one of the two cases (i) and (ii) for all

t > t1. This completes the proof. �
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Lemma 2.2. Assume that (A1)–(A4) hold. If x is an eventually positive solution

of (1.1), then any one of the following two cases holds:

(1) if z satisfies (i), then lim
t→∞

x(t) = 0;

(2) if z satisfies (ii), then there exist t1 > t0 and δ > 0 such that

0 < z(t) 6 δΠ(t),(2.3)

(Π(t)−Π(t1))

(
∫

∞

t

m
∑

i=1

qi(ζ)x
αi (σi(ζ)) dζ

)1/γ

6 z(t) 6 x(t)(2.4)

hold for all t > t1.

P r o o f. Let x be an eventually positive solution of (1.1). Then there exists

a t0 > 0 such that x(t) > 0, x(τ(t)) > 0 and x(σi(t)) > 0 for all t > t0 and

i = 1, 2, . . . ,m. Applying Lemma 2.1 for t > t1 > t0 we have the following two cases:

Case 1 : Let z satisfy (i) for all t > t1. Note that lim
t→∞

z(t) exists. As 0 > z(t) >

x(t)− p0x(τ(t)), then

0 > lim
t→∞

z(t) > lim
t→∞

(x(t) − p0x(τ(t))) > (1− p0) lim sup
t→∞

x(t)

implies that lim sup
t→∞

x(t) = 0 and hence lim
t→∞

x(t) = 0.

Case 2 : Let z satisfy (ii) for all t > t1. In this case, x(t) > z(t) > 0 and z is

increasing. From r(t)(z′(t))γ > 0 and being non-increasing, we have

z′(t) 6
(r(t1)

r(t)

)1/γ

z′(t1) for t > t1.

Integrating this inequality from t1 to t,

z(t) 6 z(t1) + (r(t1))
1/γz′(t1)(Π(t) −Π(t1)).

Since lim
t→∞

Π(t) = ∞, there exists a positive constant δ such that (2.3) holds. On the

other hand, lim
t→∞

r(t)(z′(t))γ exists and integrating (1.1) from t to a, we obtain

r(a)(z′(a))γ − r(t)(z′(t))γ = −

∫ a

t

m
∑

i=1

qi(η)x
αi (σi(η)) dη.

Taking limit as a → ∞,

(2.5) r(t)(z′(t))γ >

∫

∞

t

m
∑

i=1

qi(η)x
αi (σi(η)) dη,
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that is,

z′(t) >

(

1

r(t)

∫

∞

t

m
∑

i=1

qi(η)x
αi (σi(η)) dη

)1/γ

.

Therefore

z(t) >

∫ t

t1

(

1

r(η)

∫

∞

η

m
∑

i=1

qi(ζ)x
αi (σi(ζ)) dζ

)1/γ

dη

>

∫ t

t1

(

1

r(η)

∫

∞

t

m
∑

i=1

qi(ζ)x
αi (σi(ζ)) dζ

)1/γ

dη

= (Π(t) −Π(t1))

(
∫

∞

t

m
∑

i=1

qi(ζ)x
αi (σi(ζ)) dζ

)1/γ

.

This completes the proof of the lemma. �

Lemma 2.3. Assume that (A1)–(A4) hold. If x is an eventually positive un-

bounded solution of (1.1), then z satisfies (ii) only.

Theorem 2.1. Assume that there exists a constant β1, the quotient of odd pos-

itive integers such that 0 < αi < β1 < γ. If (A1)–(A4) hold, then every solution

of (1.1) either oscillates or converges to zero as t → ∞ if and only if

(2.6)

∫

∞

0

m
∑

i=1

qi(η)Π
αi (σi(η)) dη = ∞.

P r o o f. We prove the sufficiency by contradiction. Initially, we assume that

a solution x is eventually positive which means it does not converge to zero. So,

Lemma 2.1 holds and z satisfies any one of the two cases (i) and (ii). In Lemma 2.2,

Case 1 leads to lim
t→∞

x(t) = 0, which is a contradiction.

For Case 2, we can find a t1 > 0 such that

x(t) > z(t) > (Π(t) −Π(t1))w
1/γ(t) > 0 for t > t1,

where

w(t) =

∫

∞

t

m
∑

i=1

qi(ζ)x
αi (σi(ζ)) dζ > 0.

As lim
t→∞

Π(t) = ∞, there exists a t2 > t1 such that Π(t) − Π(t1) >
1
2Π(t) for t > t2

and hence

(2.7) z(t) >
1

2
Π(t)w1/γ(t).
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Using (2.3), αi − β1 < 0 and (2.7), we have

xαi(t) > zαi−β1(t)zβ1(t) > (δΠ(t))αi−β1zβ1(t)

> (δΠ(t))αi−β1

(Π(t)w1/γ(t)

2

)β1

=
δαi−β1

2β1

Παi(t)wβ1/γ(t) for t > t2.

Since w′(t) = −
m
∑

i=1

qi(t)x
αi (σi(t)) 6 0, t > t2, that is, w is non-increasing, the last

inequality becomes

xαi(σi(η)) >
δαi−β1

2β1

Παi(σi(η))w
β1/γ(σi(η)) >

δαi−β1

2β1

Παi(σi(η))w
β1/γ(η).

Therefore

(2.8) (w1−β1/γ(t))′ =
(

1−
β1

γ

)

w−β1/γ(t)w′(t).

Integrating (2.8) from t2 to t and then using the fact that w > 0, we find

∞ > w1−β1/γ(t2) >
(

1−
β1

γ

)

∫ t

t2

−w−β1/γ(η)w′(η) dη

=
(

1−
β1

γ

)

∫ t

t2

w−β1/γ(η)

( m
∑

i=1

qi(η)x
αi (σi(η))

)

dη

>
1

2β1δ(β1−αi)

(

1−
β1

γ

)

∫ t

t2

m
∑

i=1

qi(η)Π
αi (σi(η)) dη,

which contradicts (2.6) as t → ∞ and completes the proof of sufficiency for eventually

positive solutions. For an eventually negative solution x, we introduce the variables

y = −x so that we can apply the above process for the solution y.

Next we show the necessity part by a contrapositive argument. Let (2.6) do not

hold. Then it is possible to find a t1 > 0 such that

(2.9)

∫

∞

η

m
∑

i=1

qi(ζ)Π
αi (σi(ζ)) dζ 6 εδ−αi

for all η > t1 and δ, ε > 0 satisfying the relation

(2.10) (2ε)1/γ = (1− p0)δ,

so that 0 < ε1/γ = (1− p0)δ/2
1/γ < δ. Define the set of continuous functions

M = {x ∈ C([0,∞)) : ε1/γ(Π(t) −Π(t1)) 6 x(t) 6 δ(Π(t) −Π(t1)), t > t1}
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and define the operator Φ on M by

(Φx)(t) =0 if t 6 t1,

(Φx)(t) =− p(t)x(τ(t))

+

∫ t

t1

(

1

r(η)

(

ε+

∫

∞

η

m
∑

i=1

qi(ζ)x
αi (σi(ζ)) dζ

))1/γ

dη if t > t1.

We need to show that Φ has a fixed point which is our required solution of (1.1).

First we estimate (Φx)(t) from below. For x ∈ M we have 0 6 ε1/γ
(

Π(t)−Π(t1)
)

6

x(t), and by (A2) and (A3) we have

(Φx)(t) > 0 +

∫ t

t1

( 1

r(η)
(ε+ 0)

)1/γ

dη = ε1/γ(Π(t) −Π(t1)).

Now we estimate (Φx)(t) from above. For x in M and by the definition of M , we

have xαi(σi(η)) 6 (δΠ(σi(η)))
αi . Therefore, by (2.9),

(Φx)(t) 6 p0δ(Π(τ(t)) −Π(t1))

+

∫ t

t1

(

1

r(η)

(

ε+ δαi

∫

∞

η

m
∑

i=1

qi(ζ)Π
αi (σi(ζ)) dζ

))1/γ

dη

6 p0δ(Π(t)− Π(t1)) + (2ε)1/γ(Π(t)−Π(t1)) = δ(Π(t) −Π(t1)).

Hence, Φ maps M to M .

To find our fixed point for Φ in M , let us define a sequence of functions in M by

the recurrence relation

u0(t) = 0 for t = 0,

u1(t) = (Φu0)(t) =

{

0

ε1/γ(Π(t)−Π(t1))

if t < t1,

if t > t1,

un+1(t) = (Φun)(t) for n > 1, t > t1.

Note that for each fixed t we have u1(t) > u0(t). Using mathematical induction,

it is easy to show that un+1(t) > un(t). Therefore, the sequence {un} converges

pointwise to a function u. Using the Lebesgue dominated convergence theorem, we

can show that u is a fixed point of Φ in M . This shows under assumption (2.9), that

there is a non-oscillatory solution that does not converge to zero. �

Corollary 2.1. Under the assumptions of Theorem 2.1, every unbounded solu-

tion of (1.1) is oscillatory if and only if (2.6) holds.

P r o o f. The proof of the corollary is an immediate consequence of Theorem 2.1.

�
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Theorem 2.2. Assume that there exists a constant β2, the quotient of odd pos-

itive integers such that γ < β2 < αi. If (A1)–(A5) hold and r(t) is non-decreasing,

then every solution of (1.1) either oscillates or converges to zero if and only if

(2.11)

∫

∞

0

(

1

r(η)

∫

∞

η

m
∑

i=1

qi(ζ) dζ

)1/γ

dη = ∞.

P r o o f. We prove the sufficiency by contradiction. Initially, we assume that x

is an eventually positive solution not converging to zero. So, Lemma 2.1 holds

and z satisfies any one of the two cases (i) and (ii). In Lemma 2.2, Case 1 leads to

lim
t→∞

x(t) = 0, which is a contradiction.

For Case 2, z(t) > 0 is increasing for t > t1 and

xαi(t) > zαi(t) > zαi−β2(t)zβ2(t) > zαi−β2(t1)z
β2(t)

implies that

(2.12) xαi (σi(t)) > zαi−β2(t1)z
β2(σi(t)) for t > t2 > t1.

Using (2.5), (2.12) and σi(t) > σ0(t), we have

(2.13) r(t)(z′(t))γ > zαi−β2(t1)

(
∫

∞

t

m
∑

i=1

qi(η) dη

)

zβ2(σi(t))

> zαi−β2(t1)

(
∫

∞

t

m
∑

i=1

qi(η) dη

)

zβ2(σ0(t))

for t > t2. Being r(t)(z
′(t))γ non-increasing and σ0(t) 6 t, we have

r(σ0(t))(z
′(σ0(t)))

γ > r(t)(z′(t))γ .

Using the last inequality in (2.13) and then dividing by zβ2(σ0(t)) > 0, and then

operating the power 1/γ on both sides, we get

z′(σ0(t))

zβ2/γ(σ0(t))
>

(

zαi−β2(t1)

r(σ0(t))

∫

∞

t

m
∑

i=1

qi(η) dη

)1/γ

for t > t2. Multiplying the left-hand side by σ′

0(t)/α > 1 and integrating from t2

to t, we find

(2.14)
1

α

∫ t

t2

z′(σ0(η))σ
′

0(η)

zβ2/γ(σ0(η))
dη

> z(αi−β2)/γ(t1)

∫ t

t2

(

1

r(σ0(η))

∫

∞

η

m
∑

i=1

qi(ζ) dζ

)1/γ

dη, t > t2.
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Since γ < β2, r(σ0(η)) 6 r(η) and

1

α(1− β2/γ)
(z1−β2/γ(σ0(η)))

t
η=t2 6

1

α(β2/γ − 1)
z1−β2/γ(σ0(t2)),

equation (2.14) becomes

∫

∞

t2

(

1

r(η)

∫

∞

η

m
∑

i=1

qi(ζ) dζ

)1/γ

dη < ∞,

which is a contradiction to (2.11). This contradiction implies that the solution x

cannot be eventually positive. The case where x is eventually negative is very similar

and we omit it here.

To prove the necessity part, we assume that (2.11) does not hold. For given

ε = (2/(1− p0))
−αi/γ > 0, we can find a t1 > 0 such that

(2.15)

∫

∞

t1

(

1

r(η)

∫

∞

η

m
∑

i=1

qi(ζ) dζ

)1/γ

dη < ε.

Consider

M =
{

x ∈ C([0,∞)) : 1 6 x(t) 6
2

1− p0
for t > t1

}

.

Define the operator

(Φx)(t) = 0 if t < t1,

(Φx)(t) = 1− p(t)x(τ(t)) +

∫ t

t1

(

1

r(η)

∫

∞

η

m
∑

i=1

qi(ζ)x
αi (σi(ζ)) dζ

)1/γ

dη if t > t1.

Indeed, Φx = x implies that x is a solution of (1.1).

First we estimate (Φx)(t) from below. Let x ∈ M . Then 1 6 x implies that

(Φx)(t) > 1 on [t1,∞). Estimating (Φx)(t) from above, we let x ∈ M . Then

x 6 2/(1− p0) and thus

(Φx)(t) 6 1− p(t)
2

1− p0
+

∫ t

t1

(

1

r(η)

∫

∞

η

m
∑

i=1

qi(ζ)
( 2

1− p0

)αi

dζ

)1/γ

dη.

By (2.15) and then by the definition of ε, we obtain

(Φx)(t) 6 1 +
2p0

1− p0
+
( 2

1− p0

)αi/γ

ε = 1 +
2p0

1− p0
+ 1 =

2

1− p0
.

Therefore Φ maps M to M .
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To find a fixed point for Φ inM , we define a sequence of functions by the recurrence

relation
u0(t) = 0 for t = 0,

u1(t) = (Φu0)(t) = 1 for t > t1,

un+1(t) = (Φun)(t) for n > 1, t > t1.

Note that for each fixed t we have u1(t) > u0(t) and we can prove un+1(t) > un(t) by

using the method of induction. Therefore, {un} converges pointwise to a function u

in M . By Lebesgue’s dominated convergence theorem, u is a fixed point of Φ and a

positive solution to (1.1), which is not converging to zero. This completes the proof

of the theorem. �

Corollary 2.2. Under the assumptions of Theorem 2.2, every unbounded solution

of (1.1) is oscillatory if and only if (2.11) holds.

E x am p l e 2.1. Consider the neutral differential equation

(2.16) (e−t((x(t) − e−tx(τ(t)))′)11/3)′

+
1

t+ 1
(x(t− 2))1/3 +

1

t+ 2
(x(t− 1))5/3 = 0.

Here γ = 11
3 , r(t) = e−t, −1 < p(t) = −e−t 6 0, σ1(t) = t − 2, σ2(t) = t − 1,

Π(t) =
∫ t

0 e
3s/11 ds = 11

3 (e
3t/11−1). For β1 = 7

3 , we have 0 < max{α1, α2} < β1 < γ,

and xα1−β1 = x−2 and xα2−β1 = x−2/3, which both are decreasing functions. To

check (2.6) we have

∫

∞

0

m
∑

i=1

qi(η)Π
αi(σi(η)) dη >

∫

∞

0

q1(η)Π
α1 (σ1(η)) dη

=

∫

∞

0

1

η + 1

(11

3
(e3(η−2)/11 − 1)

)1/3

dη = ∞,

since the integral approaches ∞ as η → ∞. So, all the conditions of Theorem 2.1

hold. Thus, every solution of (2.16) either oscillates or converges to zero.

E x am p l e 2.2. Consider the neutral differential equation

(2.17) (((x(t) − e−tx(τ(t)))′)1/3)′ + t(x(t− 2))7/3 + (t+ 1)(x(t− 1))11/3 = 0.

Here γ = 1
3 , r(t) = 1, σ1(t) = t − 2, σ2(t) = t − 1. For β2 = 5

3 , we have

min{α1, α2} > β2 > γ, and xα1−β2 = x2/3 and xα2−β2 = x2, which both are in-
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creasing functions. To check (2.11) we have

∫

∞

t1

(

1

r(η)

∫

∞

η

m
∑

i=1

qi(ζ) dζ

)1/γ

dη >

∫

∞

t0

(

1

r(η)

∫

∞

η

q1(ζ) dζ

)1/γ

dη

>

∫

∞

2

(
∫

∞

η

ζ dζ

)3

dη = ∞.

So, all the conditions of Theorem 2.2 hold. Thus, every solution of (2.17) either

oscillates or converges to zero.

R em a r k 2.1. Based on this work and [5], [6], [8], [13], [15], [17], [19], [18],

[25], [28] an open problem that arises is to establish necessary and sufficient con-

ditions for the oscillation of the solutions of the second-order neutral differential

equation (1.1) for p > 0 and −∞ < p 6 −1.

A c k n ow l e d gm e n t. The authors are thankful to the referees for their valuable

suggestions and comments which improved the content of this paper.
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