Previous |  Up |  Next

Article

Keywords:
consensus; multi-agent system; nonlinear dynamics; time-varying delay; Hopf bifurcation
Summary:
To explore the impacts of time delay on nonlinear dynamics of consensus models, we incorporate time-varying delay into a two-agent system to study its long-time behaviors. By the classical 3/2 stability theory, we establish a sufficient condition for the system to experience unconditional consensus. Numerical examples show the effectiveness of the proposed protocols and present possible Hopf bifurcations when the time delay changes.
References:
[1] Ahn, S. M., Ha, S.-Y.: Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises. J. Math. Phys. 51 (2010), Article ID 103301, 17 pages. DOI 10.1063/1.3496895 | MR 2761313 | Zbl 1314.92019
[2] Albi, G., Balagué, D., Carrillo, J. A., Brecht, J. von: Stability analysis of flock and mill rings for second order models in swarming. SIAM J. Appl. Math. 74 (2014), 794-818. DOI 10.1137/13091779X | MR 3215070 | Zbl 1305.37044
[3] Atay, F. M.: The consensus problem in networks with transmission delays. Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 371 (2013), Article ID 20120460, 13 pages. DOI 10.1098/rsta.2012.0460 | MR 3094343 | Zbl 1353.94089
[4] Bánhelyi, B., Csendes, T., Krisztin, T., Neumaier, A.: Global attractivity of the zero solution for Wright's equation. SIAM J. Appl. Dyn. Syst. 13 (2014), 537-563. DOI 10.1137/120904226 | MR 3183042 | Zbl 1301.34094
[5] Bliman, P.-A., Ferrari-Trecate, G.: Average consensus problems in networks of agents with delayed communications. Automatica 44 (2008), 1985-1995. DOI 10.1016/j.automatica.2007.12.010 | MR 2531328 | Zbl 1283.93013
[6] Cucker, F., Dong, J.-G.: A general collision-avoiding flocking framework. IEEE Trans. Autom. Control 56 (2011), 1124-1129. DOI 10.1109/TAC.2011.2107113 | MR 2815917 | Zbl 1368.93261
[7] Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52 (2007), 852-862. DOI 10.1109/TAC.2007.895842 | MR 2324245 | Zbl 1366.91116
[8] Dehghani, M. A., Menhaj, M. B.: Communication free leader-follower formation control of unmanned aircraft systems. Robot. Auton. Syst. 80 (2016), 69-75. DOI 10.1016/j.robot.2016.03.008
[9] Silva, V. de, Ghrist, R.: Coverage in sensor networks via persistent homology. Algebr. Geom. Topol. 7 (2007), 339-358. DOI 10.2140/agt.2007.7.339 | MR 2308949 | Zbl 1134.55003
[10] Erban, R., Haškovec, J., Sun, Y.: A Cucker-Smale model with noise and delay. SIAM J. Appl. Math. 76 (2016), 1535-1557. DOI 10.1137/15M1030467 | MR 3534479 | Zbl 1345.60063
[11] Jabin, P.-E., Motsch, S.: Clustering and asymptotic behavior in opinion formation. J. Differ. Equations 257 (2014), 4165-4187. DOI 10.1016/j.jde.2014.08.005 | MR 3264419 | Zbl 1316.34051
[12] Krisztin, T.: On stability properties for one-dimensional functional differential equations. Funkc. Ekvacioj, Ser. Int. 34 (1991), 241-256. MR 1130462 | Zbl 0746.34045
[13] Lin, P., Jia, Y.: Average consensus in networks of multi-agents with both switching topology and coupling time-delay. Physica A 387 (2008), 303-313. DOI 10.1016/j.physa.2007.08.040
[14] Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Trans. Autom. Control 51 (2006), 401-420. DOI 10.1109/TAC.2005.864190 | MR 2205679 | Zbl 1366.93391
[15] Olfati-Saber, R., Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49 (2004), 1520-1533. DOI 10.1109/TAC.2004.834113 | MR 2086916 | Zbl 1365.93301
[16] Sharifi, F., Mirzaei, M., Zhang, Y., Gordon, B. W.: Cooperative multi-vehicle search and coverage problem in uncertain environments. Unmanned Syst. 3 (2015), 35-47. DOI 10.1142/S230138501550003X
[17] Shen, J.: Cucker-Smale flocking under hierarchical leadership. SIAM J. Appl. Math. 68 (2008), 694-719. DOI 10.1137/060673254 | MR 2375291 | Zbl 1311.92196
[18] So, J. W.-H., Tang, X., Zou, X.: Stability in a linear delay system without instantaneous negative feedback. SIAM J. Math. Anal. 33 (2002), 1297-1304. DOI 10.1137/S0036141001389263 | MR 1920631 | Zbl 1019.34074
[19] So, J. W.-H., Yu, J. S., Chen, M.-P.: Asymptotic stability for scalar delay differential equations. Funkc. Ekvacioj, Ser. Int. 39 (1996), 1-17. MR 1401650 | Zbl 0930.34056
[20] Sohrabi, K., Gao, J., Ailawadhi, V., Pottie, G. J.: Protocols for self-organisation of a wireless sensor network. IEEE Pers. Commun. 7 (2000), 16-27. DOI 10.1109/98.878532
[21] Wei, J.: Bifurcation analysis in a scalar delay differential equation. Nonlinearity 20 (2007), 2483-2498. DOI 10.1088/0951-7715/20/11/002 | MR 2361242 | Zbl 1141.34045
[22] Wright, E. M.: A non-linear difference-differential equation. J. Reine Angew. Math. 194 (1955), 66-87. DOI 10.1515/crll.1955.194.66 | MR 0072363 | Zbl 0064.34203
[23] Xiao, F., Wang, L.: State consensus for multi-agent systems with switching topologies and time-varying delays. Int. J. Control 79 (2006), 1277-1284. DOI 10.1080/00207170600825097 | MR 2252185 | Zbl 1330.94022
[24] Yoneyama, T.: On the 3/2 stability theorem for one-dimensional delay-differential equations. J. Math. Anal. Appl. 125 (1987), 161-173. DOI 10.1016/0022-247X(87)90171-5 | MR 0891356 | Zbl 0655.34062
[25] Zhang, X., Liu, L., Feng, G.: Leader-follower consensus of time-varying nonlinear multiagent systems. Automatica 52 (2015), 8-14. DOI 10.1016/j.automatica.2014.10.127 | MR 3310808 | Zbl 1309.93018
[26] Zhou, N., Xia, Y.: Coordination control design for formation reconfiguration of multiple spacecraft. IET Control Theory Appl. 9 (2015), 2222-2231. DOI 10.1049/iet-cta.2015.0144 | MR 3442965
[27] Zuo, Z., Tie, L.: A new class of finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Control 87 (2014), 363-370. DOI 10.1080/00207179.2013.834484 | MR 3172512 | Zbl 1317.93027
Partner of
EuDML logo