[1] Abhishek, K., Singh, M. P., Ghosh, S., Anand, A.:
Weather forecasting model using artificial neural network. Procedia Technology 4 (2012), 311-318.
DOI 10.1016/j.protcy.2012.05.047
[3] Arcucci, R., D'Amore, L., Pistoia, J., Toumi, R., Murli, A.:
On the variational data assimilation problem solving and sensitivity analysis. J. Comput. Phys. 335 (2017), 311-326.
DOI 10.1016/j.jcp.2017.01.034 |
MR 3612500 |
Zbl 1375.49036
[4] Arcucci, R., McIlwraith, D., Guo, Y.-K.:
Scalable weak constraint Gaussian processes. Computational Science -- ICCS 2019 Lecture Notes in Computer Science 11539. Springer, Cham (2019), 111-125.
DOI 10.1007/978-3-030-22747-0_9 |
MR 3976280
[6] Aristodemou, E., Arcucci, R., Mottet, L., Robins, A., Pain, C., Guo, Y.-K.:
Enhancing CFD-LES air pollution prediction accuracy using data assimilation. Building and Environment 165 (2019), Article ID 106383, 15 pages.
DOI 10.1016/j.buildenv.2019.106383
[7] Beal, M. J.: Variational Algorithms for Approximate Bayesian Inference: A Thesis Submitted for the Degree of Doctor of Philosophy of the University of London. University of London, London (2003).
[8] Bentham, J. H. T.: Microscale Modelling of Air Flow and Pollutant Dispersion in the Urban Environment: Doctoral Thesis. University of London, London (2004).
[10] Bócsi, B., Hennig, P., Csató, L., Peters, J.:
Learning tracking control with forward models. IEEE International Conference on Robotics and Automation (ICRA) IEEE, New York (2012), 259-264.
DOI 10.1109/ICRA.2012.6224831
[11] Cornford, D., Nabney, I. T., Williams, C. K. I.: Adding constrained discontinuities to Gaussian process models of wind fields. Advances in Neural Information Processing Systems 11 (NIPS 1998) MIT Press, Cambridge (1999), 861-867.
[13] D'Amore, L., Arcucci, R., Marcellino, L., Murli, A.:
A parallel three-dimensional variational data assimilation scheme. Numerical Analysis and Applied Mathematics, ICNAAM 2011 AIP Conference Proceedings 1389. AIP, Melville (2011), 1829-1831.
DOI 10.1063/1.3636965 |
Zbl 1262.65002
[15] Dur, T. H., Arcucci, R., Mottet, L., Solana, M. Molina, Pain, C., Guo, Y.-K.:
Weak constraint Gaussian processes for optimal sensor placement. J. Comput. Sci. 42 (2020), Article ID 101110, 12 pages.
DOI 10.1016/j.jocs.2020.101110 |
MR 4082342
[16] Germain, M., Gregor, K., Murray, I., Larochelle, H.: MADE: Masked Autoencoder for Distribution Estimation. Proc. Mach. Learn. Res. 37 (2015), 881-889.
[17] González-Banos, H.:
A randomized art-gallery algorithm for sensor placement. SCG'01: Proceedings of the 17th Annual Symposium on Computational Geometry ACM, New York (2001), 232-240.
DOI 10.1145/378583.378674 |
Zbl 1375.68139
[18] Goodfellow, I., Bengio, Y., Courville, A.:
Deep Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2016).
MR 3617773 |
Zbl 1373.68009
[19] Team, Google Brain:
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Available at
https://www.tensorflow.org/ (2015).
[20] Guestrin, C., Krause, A., Singh, A. P.:
Near-optimal sensor placements in Gaussian processes. ICML'05: Proceedings of the 22nd International Conference on Machine Learning ACM, New York (2005), 265-272.
DOI 10.1145/1102351.1102385
[21] Hagan, J., Gillis, A. R., Chan, J.:
Explaining official delinquency: A spatial study of class, conflict and control. Sociological Quarterly 19 (1978), 386-398.
DOI 10.1111/j.1533-8525.1978.tb01183.x
[23] Jarrin, N., Benhamadouche, S., Laurence, D., Prosser, R.:
A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. Int. J. Heat Fluid Flow 27 (2006), 585-593.
DOI 10.1016/j.ijheatfluidflow.2006.02.006
[24] Kelly, F. J., Fussell, J. C.:
Improving indoor air quality, health and performance within environments where people live, travel, learn and work. Atmospheric Environment 200 (2019), 90-109.
DOI 10.1016/j.atmosenv.2018.11.058
[26] Krause, A., Singh, A., Guestrin, C.:
Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 9 (2008), 235-284.
Zbl 1225.68192
[28] Lin, C.-C., Wang, L. L.:
Forecasting simulations of indoor environment using data assimilation via an ensemble Kalman filter. Building and Environment 64 (2013), 169-176.
DOI 10.1016/j.buildenv.2013.03.008
[30] MacKay, D. J. C.: Introduction to Gaussian processes. Neural Networks and Machine Learning NATO ASI Series F Computer and Systems Sciences 168. Springer, Berlin (1998), 133-166.
[31] M. I. Mead, O. A. M. Popoola, G. B. Stewart, P. Landshoff, M. Calleja, M. Hayes, J. J. Baldovi, M. W. McLeod, T. F. Hodgson, J. Dicks, A. Lewis, J. Cohen, R. Baron, J. R. Saffell, R. L. Jones:
The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. Atmospheric Environment 70 (2013), 186-203.
DOI 10.1016/j.atmosenv.2012.11.060
[32] Pain, C. C., Umpleby, A. P., Oliveira, C. R. E. de, Goddard, A. J. H.:
Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations. Comput. Methods Appl. Mech. Eng. 190 (2001), 3771-3796.
DOI 10.1016/S0045-7825(00)00294-2 |
Zbl 1008.76041
[33] Papamakarios, G., Pavlakou, T., Murray, I.: Masked autoregressive flow for density estimation. Advances in Neural Information Processing Systems 30 (NIPS 2017) MIT Press, Cambridge (2017), 2338-2347.
[34] Pavlidis, D., Gorman, G. J., Gomes, J. L. M. A., Pain, C. C., ApSimon, H.:
Synthetic-eddy method for urban atmospheric flow modelling. Boundary-Layer Meteorology 136 (2010), 285-299.
DOI 10.1007/s10546-010-9508-x
[35] Quiñonero-Candela, J., Rasmussen, C. E.:
A unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res. 6 (2005), 1939-1959.
MR 2249877 |
Zbl 1222.68282
[36] Ramakrishnan, N., Bailey-Kellogg, C., Tadepalliy, S., Pandey, V. N.:
Gaussian processes for active data mining of spatial aggregates. Proceedings of the 2005 SIAM International Conference on Data Mining SIAM, Philadelphia (2005), 427-438.
DOI 10.1137/1.9781611972757.38
[37] Rasmussen, C. E.:
Gaussian processes in machine learning. Advanced Lectures on Machine Learning Lecture Notes in Computer Science 3176. Springer, Berlin (2003), 63-71.
DOI 10.1007/978-3-540-28650-9_4
[40] J. Song, S. Fan, W. Lin, L. Mottet, H. Woodward, M. Davies Wykes, R. Arcucci, D. Xiao, J.-E. Debay, H. ApSimon, E. Aristodenou, D. Birch, M. Carpentieri, F. Fang, M. Herzog, G. R. Hunt, R. L. Jones, C. Pain, D. Pavlidis, A. G. Robins, C. A. Short, P. F. Linden:
Natural ventilation in cities: The implications of fluid mechanics. Building Research & Information 46 (2018), 809-828.
DOI 10.1080/09613218.2018.1468158
[41] Titsias, M. K.: Variational learning of inducing variables in sparse Gaussian processes. Proc. Mach. Learn. Res. 5 (2009), 567-574.
[42] Titsias, M. K.: Variational Model Selection for Sparse Gaussian Process Regression. Technical report, University of Manchester, Manchester (2009).