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Abstract. Sensor placement is an optimisation problem that has recently gained great
relevance. In order to achieve accurate online updates of a predictive model, sensors are used
to provide observations. When sensor location is optimally selected, the predictive model
can greatly reduce its internal errors. A greedy-selection algorithm is used for locating
these optimal spatial locations from a numerical embedded space. A novel architecture for
solving this big data problem is proposed, relying on a variational Gaussian process. The
generalisation of the model is further improved via the preconditioning of its inputs: Masked
Autoregressive Flows are implemented to learn nonlinear, invertible transformations of the
conditionally modelled spatial features. Finally, a global optimisation strategy extending
the Mutual Information-based optimisation and fine-tuning of the selected optimal location
is proposed. The methodology is parallelised to speed up the computational time, making
these tools very fast despite the high complexity associated with both spatial modelling and
placement tasks. The model is applied to a real three-dimensional test case considering a
room within the Clarence Centre building located in Elephant and Castle, London, UK.
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1. Introduction

Indoor Air Quality (IAQ) impacts health, comfort and quality of life [24], and three

basic strategies have been proposed to improve it: control of pollution sources, use

of natural/mechanical ventilation, and cleaning of air. In the building context, the

management and development of smart monitoring tools can support an adequate

IAQ within them (e.g. by automatically opening windows or starting a mechanical

air cleaning system). Sensors coupled with indoor pollutant forecasting models can

tackle bad IAQ by implementing one of the previously-cited strategies before the

indoor pollutant concentration reaches dangerous and adverse levels.

In order to achieve accurate, online updates of the predictive model, sensors can

be used to provide observations. Spatio-temporal models such as Data Assimilation

(DA) provide online learning and forecasting of sensor observations by means of up-

dating the model’s internal view through the incorporation of collected data [5], [13].

In this context, sensor positioning has gained relevance [20], [26] as it is crucial to

ensure a good quality and usefulness of monitored data. Optimal sensor positioning

tools pin-point the discrete spatial locations that possess most conditional informa-

tion of all other spatial points, thus improving the predictive accuracy of prediction

models [3]. Hence, sensor placement can be seen as an optimisation problem [20], [26].

Early attempts on sensor placement used geometric approaches, supported by the

assumption that sensors measure spatial features with a fixed sensing radius [17].

This geometric approach does not take into account the nonlinear dynamic behaviour

of air motion, so, in order to tackle this problem, parametric models [1], nonpara-

metric Gaussian Process (GP) [11] and ensemble Kalman-filters [28] approaches were

subsequently proposed.

The main work on this field implements sensor placement using a GP in a 2D

space [26]. The time complexity of the placement algorithm is O(N4), where N

denotes the side of the computational domain. The GP is trained on data collected

from fixed sensors located in a room, and therefore N is relatively small. The place-

ment algorithm only selects the best sensors in the set already provided. In [15],

the problem of finding the optimal sensor placement for pollutant dispersion within

an urban environment is addressed using a weak constraint GP model [4]. Also, the

model uses temporal sequences of data from fluid dynamic simulations, therefore fac-

ing a big data problem. The resulting big data problem is addressed by introducing

a domain decomposition approach.

In this work, for the first time, a sensor placement model is developed for a 3D

domain representing an indoor real case scenario. In our case, N is on an scale

such that the use of a GP is unfeasible. To address this problem we developed

a combination of deep learning, probabilistic frameworks and variational methods,
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reducing the complexity associated with training, inference and optimisation and

thus enabling us to achieve optimal placement results in a real case scenario. The

complexity of our model is, in fact, O(klM4), where k is the number of sensors,

l is the number of iterations needed to optimise the position and M is such that

M << N .

The rest of this paper is organized as follows: the next section introduces the

background to this work and our main contributions. Section 3 presents the math-

ematical formulation of our proposed model, variational Gaussian process optimal

sensor (VGPosp). Section 4 describes the direct application of VGPosp to a real

indoor environment. The manuscript ends with some conclusions and further work.

2. Background and main contributions

Nonparametric models consist in learning a Gaussian Process (GP) associated

with the phenomenology considered (e.g. pollution levels in indoor environments).

In general, GPs are highly appropriate to study environmental problems as they

allow for learning complex, high-dimensional correlations with uncertainty quantifi-

cation. Indeed, nonparametric expressiveness is an advantage over parametric models

that are more prone to the curse of dimensionality [30]. A GP, sometimes referred

as the Bayesian interpretation of neural networks, is fully determined by only two

parameters, namely the mean-function and covariance-function, regardless of their

dimensionality [37]. Three main GP methodologies can be identified: the Traditional

GP [20], [26], the Sparse GP [35] and the Variational GP [42], [41].

Traditional GP is a stochastic process based on prior distribution over functions,

and it has been successfully applied for indoor optimal sensor positioning [20], [26].

However, Traditional GP suffers from the high complexities associated with spatial

modelling O((mN)3), where N denotes the size of input sensor potential locations

and m the number of physical variables, which explains why the work presented

in [20], [26] was only carried out in two dimensions.

Sparse Variational Process (SGP) tackles the inconvenient O((mN)3) computa-

tional complexity associated with Traditional GP [21]. This method constructs an

approximation based on a small subset of size N̂ , namely inducing points. This

optimisation results in a reduced complexity O((mN)N̂2), enabling the scalability

of training data-points from the previous limit of a few thousand to the range of

millions [22]. In general, sparsity can be achieved by working on a low-rank repre-

sentation of the full kernel [29]. The key idea is to approximate the prior or modify

the likelihood function, thus creating a model selection problem solving the optimi-

sation for the approximation of the truth [35]. However, the main criticism of SGPs
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is that they learn unknown hyperparameters, potentially leading them to underesti-

mate variance and thus over-fitting [42], [41].

Alternatively, variational Gaussian process (VGP), a variational method for SGP,

was developed [42], [41] to deal with the approximation of model components that are

hard to compute. Inducing points are variational parameters selected by minimising

the Kullback-Leibler (KL) divergence [42], [41]. The kernel hyperparameters and

inducing points are jointly optimised by maximising a lower bound (Evidence Lower

BOund (ELBO)) of the variational distribution over the function’s latent values [42],

[41], [25]. The key innovation is that the likelihood and the GP prior are not mod-

ified, separating the model and the inference. The variational posterior iteratively

approaches the true posterior.

The datasets used to train a GP usually comprise data coming from monitor-

ing sensors during extensive field experiment periods. This training dataset usually

suffers from being non-Gaussian distributed, rendering it unusable for GP learn-

ing [33]. In this regard, several methodologies to precondition, normalise and render

the training dataset Gaussian can be mentioned: Variational Autoencoder [14], Au-

toregressive Flows [45], Normalising Flows [38], Masked Autoencoder for Distribution

Estimation (MADE) [16], and Masked Autoregressive Flows (MAF) [33]. The MAF

approach is a stack of MADE networks [16], [33] and has proved its competitiveness

over the other methodologies in terms of accuracy [33].

Even if VGP can deal with non-Gaussian distributed data, the preconditioning

phase of learning nonlinear, invertible transformations between the conditional in-

put distributions and the output Gaussian family of distributions enables greater

generalisation of the learned spatial model.

At this stage, the actual sensor placement problem can then be addressed using

the trained GP. Indeed, the placement algorithm is solved in an embedded space

that is predicted by a GP [42], [41]. In other words, the GP serves as a numerical

setting for the optimisation problem: conditional predictions are used to generate

the covariance matrix taken as input by the placement algorithm. The complexity

associated with the placement task is O(N4), where N denotes the size of input

sensor potential locations.

Mutual Information (MI) [20], [26] and minimum cross entropy [12], [36] are some

of the metrics traditionally used. The use of minimum cross entropy tends to max-

imise the distance between sensors. In indoor environment problems, this results

in having sensors located near the boundary of the domain, i.e. near the walls, thus

losing information monitored [36], [26]. One the other hand, information gain or Mu-

tual Information [20] shifts the amount of information captured by a single random

variable to the information each random variable has of the other unobserved one.

More specifically, considering a finite set of possible placement locations by max-
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imising the objective metric, it evaluates how well a given smaller subset of sensor

locations describes the values of the unselected other locations. This paper considers

the optimisation problem of sensor placement in indoor environments by separating

the problem into the learning of a spatial model, i.e. Gaussian Process training, and

the optimisation algorithm itself, i.e. optimal sensor placement. It is demonstrated

that with a combination of deep learning, probabilistic frameworks and variational

methods, the complexity associated with training, inference and optimisation can

be significantly reduced in order to achieve optimal placement results. This paper

builds on existing 2D sensor placement algorithm [20], [26] and the latest VGP spa-

tial modelling technologies [42], [41]. Its value is found primarily in the pairing of

technologies that in turn improve the existing methods of sensor placement.

The choice of the technologies used in this work are detailed and argued in the

following points:

⊲ Preprocessing input distribution. A Masked Autoregressive Flow (MAF)

is used to normalise the training dataset suffering from being non-Gaussian dis-

tributed, [33] making our methodology greatly generalised as well as improving

the accuracy.

⊲ Spatial model. A major challenge facing scalable sensor placement is overcome

by deploying a variational Gaussian process (VGP), using a low rank approxima-

tion that is far more scalable and also addresses the question of model generalisa-

tion. In particular, this helps to tackle the limiting O((mN)3), high polynomial

time complexities associated with GPs to O((mN)N̂2) where N̂ denotes the num-

ber of approximate posterior samples computed in the VGP. Using a VGP is a

good trade-off between efficiency and accuracy [42], [41].

⊲ Sensor placement algorithm. The Mutual Information (MI) based placement

algorithm [20], [26] is extended with a Markov-Chain Monte Carlo (MCMC) wrap-

per to fine-tune the sensor placement and tackle the time complexity O(N4) and

achieve O(klM4), where k is the number of sensors, l is the number of itera-

tion needed to optimise the position and M is such that M << N . The use of

MCMC leads to similar placement results in a fraction of the computation time

required when not using it. Error propagation through the system does exist

due to this approximation; however, it is shown in the paper to be a worthwhile

trade-off.

The technologies used in this paper are general and are not limited to the test case

of sensor placement in indoor environments, even though their integrated implemen-

tation was designed accordingly. In fact, the core underlying technology used in the

spatial model, i.e. variational Gaussian process, has been successfully deployed for

a multitude of other domains ranging from kriging to robotics [10].
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In addition to the new pairing of technologies proposed in this paper, the novelties

of this work also lie in:

⊲ The simulated training data. In order to achieve scalable and reduced cost

deployment of sensor placement optimisation, simulation data was used for model

training, replacing the expensive option of collecting large amounts measurements

from installed sensors. As an example, the training dataset used in [26] con-

sists of 52 sensors, located on a 2D plane. In this paper, the simulated training

dataset is much larger, i.e. more reliable, and consist of 10,000 sensor locations

distributed in 3D.

⊲ The increase in dimensionality. This paper increases the dimensionality of the

learning problem in order to capture further correlations between hidden features

as well as the output features, resulting in 3-dimensional spatial placement. The

3D placement made it possible for the model to capture more realistic and complex

physical phenomena such as thermal stratification for example.

⊲ The fine-tuning of sensor placement. The MCMC wrapper algorithm is used

to increase the overall Mutual Information captured. The base set of potential

sensor location is fine-tuned to include other regions in the continuous space having

higher MI. This means the selection pipeline is a more optimal set of possible

placement coordinates to choose from. Additionally, the implementation is easy

to be customised and makes our methodology generalisable.

⊲ The fully parallel and scalable implementation. The methodology presented

in this paper is done through a multi-threaded parallel implementation. The

computational graph based implementation, using the TensorFlow library [19],

greatly speeds up the computational times.

3. The variational Gaussian process for optimal sensor placement

(VGPosp) model

This section introduces the theoretical concepts and mathematical formulation

that were developed and implemented as part of the proposed model architecture.

Let X be the solution of a dynamic system:

(3.1) Ẋ = F (X, t),

where t denotes the time andX = [X1, . . . , Xm] denotes a vector ofm state variables1

such that Xi ∈ R
N for all i = 1, . . . ,m. In the following, Xt = X(t) denotes the

1 For example, as shown in Section 4, for fluid dynamic simulations in indoor environ-
ment, X = [T, P,C], where T is the temperature, P the pressure and C the pollutant
concentration.
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solution of the dynamic system at time t and Xi,t = Xi(t) the ith state variable at

time t.

Given a temporal sequence Xt1 , . . . , Xtn of n solutions of the dynamical system

defined in equation (3.1), with Xti = [X1,ti , . . . , Xm,ti ] for all i = 1, . . . , n, the

variational Gaussian process for optimal sensor placement (VGPosp) model consists

of the following main steps described in the sub-sections 3.1 to 3.3.

⊲ Section 3.1 - Preprocessing and preconditioning.

– Preconditioning of input vector distributions using Masked Autoregressive

Flows (MAF).

– Converting time-series to vector value distributions at distinct spatial regions.

⊲ Section 3.2 - Variational Gaussian process.

– Sampling algorithm, input vectors spatial training.

– Variational Gaussian process (VGP) training.

⊲ Section 3.3 - Placement algorithm.

– Selection of a set S of considered input coordinates.

– Generating target vectors with VGP inference at coordinates.

– Covariance matrix of values indexed by set S.

– Greedy selection algorithm of coordinates with maximal Mutual Informa-

tion (MI).

– Markov-Chain Monte Carlo (MCMC) based fine-tuning of coordinates.

3.1. Pre-processing and preconditioning.

The temporal sequence Xt1 , . . . , Xtn requires a pre-processing to be suitable for the

spatial model and the inference step during the placement algorithm. The pre-

processing consists of the following steps, also described in Figure 1:

t1 tn

X1

...

X

Xmy zx

1.

...

Time-series
from dynamic-

system

2.

Normalization

Preprocessing

Preconditioning

3.

Standardization MAF

X

Average at each xyz

Y

Figure 1. Pre-processing and pre-conditioning steps.

(1) X is first normalised to a mean value of 0 and standardised to achieve a standard

deviation of each feature of 1.

(2) Secondly, a Masked Autoregressive Flow (MAF) is implemented to learn invert-

ible, nonlinear transformations between the non-Gaussian distributed features

and the target Gaussian family of distributions.
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Firstly, the mean of the temporal sequence for each state variableXi, i = 1, . . . ,m,

is computed, i.e. the vector

(3.2) X = [X1, . . . , Xm],

where

(3.3) Xi =

∑n
j=1 Xi,tj

n
∀ i = 1, . . . ,m.

The vector X in equation (3.2) is used to train the Masked Autoregressive Flows

(MAF) in order to make our input variables Gaussian distributed. MAF is a neural

network that executes a normalising flow nonlinear transformation at each neuron.

MAF can be also computed as a stack of autoregressive Masked Autoencoder for

Distribution Estimation (MADE) networks [33], [16], where each model uses the

vector X in equation (3.2). The Autoregressive property of MAF defined from time-

series analysis predicts a future value of a variable from a linear combination of its

past values. Each MADE learns the distribution of the state variables.

The MAF model can be defined as follows [45]:

(3.4) XN = fN(XN−1, XN−2, . . . , X1),

where fN has a polynomial form such that [33]:

(3.5) XN = θ0 + θ1XN−1 + θ2XN−2 + . . .+ θpXN−p,

where θi are the polynomial coefficients.

Normalising flows apply a sequence of N invertible, differentiable transformation

functions fN in p(X). A base distribution p(X
′
) is specified most likely from the

family of Gaussian distributions [33], where p denotes the probability distribution.

The procedure begins with this initial distribution p(X
′
) [38].

(3.6) p(X) = p(X
′
)
∣∣∣det ∂f

−1

∂X
′

∣∣∣.

A chain rule can then be applied to the conditionals of a joint distribution.

(3.7) p(X) =

N∏

i=1

p(Xi|Xi−1, Xi−2, . . . , X1) =

N∏

i=1

p(Xi|X<i).

After each nonlinear transformation the distribution becomes more complex. Sam-

pling from this transformed distribution is done via the flow of a straightforward
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sample from the original p(X) Gaussian distribution through the nonlinear transfor-

mations. The entropy of the resultant distribution is computed with the logarithm

of the transformations:

log p(XN ) = ln p(X0)−
N∑

i=1

ln
∣∣∣det ∂fN

∂Xi−1

∣∣∣,(3.8)

p(Y ) =

N∏

i=1

(f−1
N (Y ))

∣∣∣det ∂f
−1
N

∂Y

∣∣∣.(3.9)

The vector

(3.10) Y = [Y1, . . . , Ym] ∈ R
m×N with Yj ∈ R

N ∀ j = 1, . . . ,m

is the set of normalised state variables which are the input of the variational Gaussian

process introduced in next section.

3.2. VGP training and inference. Given the data set {Yj}mj=1 of Yj ∈ R
N as

defined in equation (3.10), the m source-target pairs D = {(Yj , T )}mj=1, where T is

a target2 [9]. We aim to learn a function over all source-target pairs:

(3.11) T = g(Yj),

where g : R
N → R

N is unknown. Let the function g decouple as g = (g1, . . . , gN ),

where each gi : R
N → R. A GP regression [37] estimates the functional form of g by

placing a prior,

(3.12) p(g) =
N∏

i=1

GP(gi; 0,Σij),

where Σij denotes a covariance evaluated over pairs of inputs YiYj ∈ R
N [37]:

(3.13) Σij =
1

N

∑

k

YikY
⊤
jk .

A variational Gaussian process (VGP) is a Bayesian nonparametric variational model

that admits arbitrary structures to match posterior distributions. As described in

the following steps, the VGP generates approximate posterior samples Z by gen-

erating latent inputs, warping them with random nonlinear mappings, and using

2 In some application, T = Yj for a fixed j can be assumed.
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the warped inputs as parameters to a mean-field distribution. The random map-

pings are drawn conditionally on variational parameters. The VGP specifies a

generative process for posterior latent variables Z. At the first step it draws la-

tent input ξ ∈ R
N : ξ ∼ N (0, I) and a nonlinear mapping g : R

N → R
N condi-

tioned on D : g ∼
N∏
i=1

GP(0,Σξξ)|D. Then it draws approximate posterior samples

Z ∈ supp(p) : Z = (Z1, . . . , ZN̂
) ∼

N̂∏
i=1

q(gi(ξ)). Marginalising over all latent inputs

and nonlinear mappings, the VGP is [9]:

(3.14) qVGP(Z; θ,D) =

∫∫ [ N̂∏

i=1

q(Zi|gi(ξ))

][ N̂∏

i=1

GP(gi; 0,Σξξ)|D

]
N (ξ; 0, I) df dξ.

The VGP is parametrised by kernel hyperparameters θ and variational data [9], [37].

The random function interpolates the values in the variational data, which are opti-

mised to minimise the Kullback-Leibler divergence [27]. It defines a measure between

two probability density functions: qVGP(Z; θ,D) and q⋆(Z|Y ), where q⋆(Z|Y ) is the

posterior distribution [18].

(3.15) DKL(qVGP(Z; θ,D)||q⋆(Z|Y )) = Eq

[
log

qVGP(Z; θ,D)

q⋆(Z|Y )

]

= Eq[log qVGP(Z; θ,D)− log q⋆(Z|Y )],

where E[f(x, θ)] =
∫
θ
f(x, θ) dθ, where f denotes a distribution function (see [25]).

An approximating distribution is chosen from a predefined family of distributions

with parameters: θ,

(3.16) qθ(Z|Y ) = argmin
θ

DKL(qVGP(Z; θ,D)||q⋆(Z|Y )).

When the KL-divergence converges to 0 (see the Theorem of the Universal approx-

imation in [9]), the posterior is approximately the same as the learned posterior.

Minimising KL-divergence is done via the objective function, defined by the Evi-

dence Lower Bound (ELBO), parameterised by the parameters θ. The maximisation

of this function is equivalent to a minimising KL with a difference measured by

a constant factor [38]. The objective is summed over all data-points [25]:

(3.17) ELBO(θ) =

N̂∑

i=1

Eqθ(Z|Xi)[log qVGP(Z;C, Yi)− log qθ(Z|Yi)].

When applied to the marginal probability of the evidence [9], [41], the objective lower

bound on the marginal likelihood can be quantified by the ELBO:

(3.18) ELBO(θ) = Eq[log qVGP(Z; θ,X)]− Eq[log qθ(z|x)].
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The posterior is therefore the sum of the ELBO and the KL term:

(3.19) log q(Z) = ELBO(θ) +DKL(qθ(Z|Y )||q⋆(Z|Y )).

An approximate solution in the mean-field [43] is sought to learn parameters of the

marginal likelihood [7], obtaining an approximate posterior distribution of the true

posterior. The mean-field approximation of the variational inference allowed for the

approximate qθ(Z|Y ) distribution to be considered as a factor of N̂ independent

latent variable partitions qθ(Z|Yi).

(3.20) q⋆(Z|Y ) ≈ qθ(Z|Y ) =

N̂∏

i=1

qθ(Z|Yi)

then it yields g ∼ q⋆(Z|Y ) [44].

3.3. Placement algorithm. In this section, the placement algorithm of the

VGPosp model is introduced. The algorithm computes optimal coordinates for sen-

sor placement following three main steps as described in Figure 2 and detailed in

Algorithm 1.

1.

set S

2.

cell sampler

3.

input matrix for VGP

4.

VGP

g

4.

VGP

5.

covariance cell
input vectors

6.

covariance matrix

7.

maximum

mutual information

8.

k optimal
coordinates

Figure 2. Graphical representation of the main steps of the variational Gaussian process
for optimal sensor placement (VGPosp) model.
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Algorithm 1. The Variational Gaussian Process for the optimal sensor

placement (VGPosp) algorithm.

input: number of sensors: k, space of coordinates: S, maximum number of itera-

tions: l; ε

A⋆ = ∅ ⊲ initialise the set of optimal sensor locations

Σ = ∅ ⊲ initialise the covariance matrix

δy = 0 ⊲ initialise the mutual information parameter



while ii < k do

while it < l do

⊲ compute the covariance matrix


for i ∈ S do
for tk ∈ [t0, tn] do

Tik = g(Yik) ⊲ VGP function in 3.11

Ti = [Ti0, Ti1, . . . , Tin]



for j ∈ S do
⌊
for tk ∈ [t0, tn] do

Tjk = g(Yjk) ⊲ VGP function in 3.11

Tj = [Tj0, Tj1, . . . , Tjn]

compute Σij ⊲ using equation (3.13)

A, δi⋆ ← Algorithm 2 (Σ, S, k) ⊲ estimate the mutual information

if δi⋆ > δi or A

⋆ = ∅ then

A⋆ = A

δi = δi⋆

ii++
ii++

return A⋆

The set of coordinates V initially consists of N grid points: |V| = N . Our place-

ment algorithm is mainly based on the Mutual Information (MI) based placement al-

gorithm [20], [26] which is extended in this paper with a MCMC wrapper to fine-tune

the sensor placement and tackle the time complexity O(N4) and achieve O(klM4),

where k is the number of sensors, l is the number of iterations needed to optimise

the position and M is a predefined small subset of N such that M << N . In fact,

the fist step of Algorithm 1 consists of identifying all the possible locations which
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constitute a set S, |S| = M (see points 1 and 2 in Figure 2). The set S is an input

of Algorithm 1. Other inputs are the number k of sensors to place and the number l

of maximum iterations for the optimisation process.

We implement an optimisation method to identify a set A as the placement output

from the predefined set S of input coordinates [20] such that |A| = k. The second step

of Algorithm 1 consists in samplingm state variables from value distributions in Y at

corresponding spatial regions/cells (see point 3 in Figure 2). For each state variable

in Y (see point 4 in Figure 2), the samples T are produced by the function g which

is computed by a VGP as described in Section 3.2 (see points 1–2 in Algorithm 1):

∀ j ∈ S, Tjk = g(Yjk), Tj = [Tj0, Tj1, . . . , Tjn].

Then the covariance matrix of the values Tj is computed for the locations specified

in S using equation (3.13) (see points 5 and 6 in Figure 2). We also define the

covariance matrices related to a subset A such that:

(3.21) ΣiA =




Σi1 0 0 . . .

0 Σi2 0 . . .
...

. . .
. . .

...

. . . 0 0 Σik


 ,

where Σij is defined in equation (3.13) and k = |A|. ΣiA is used in the final step of

Algorithm 1 which maximise the mutual information (see points 7 and 8 in Figure 2),

as described in Algorithm 2, where H is the conditional entropy function defined as

(see [26]):

(3.22) H(i|A) =
1

2
log Σ2

iA +
1

2
(log(2π) + 1)

and where δi denotes the mutual information parameter [26]:

(3.23) δi =
Σ2

ii − ΣiAΣ
−1
AAΣAi

Σ2
ii − ΣiĀΣ

−1
ĀĀ

ΣĀi

.

We developed a MCMC based wrapper that works with a smaller grid of points S,

then identifies the vertices of the grid A that are potential frontiers to be explored

further. These optimal coordinates in S are thus adjusted. If the adjustment has

improved the overall mutual information, we keep the modification. Using this tech-

nique we iteratively adjust S until the mutual information value converges.
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Algorithm 2. Maximise Mutual Information (MI) using lazy evaluations.

input: Covariance matrix Σij , number of sensors k, set of coordinates S

A ← ∅
⌊
for each i ∈ S do

δi ←∞



for j = 1, . . . , k do⌊
for each i ∈ Ā = S \ A do

currenti ← false

while currenti == true do

i∗ ← argmaxi∈S\A δi

if currenti∗ == true then

break

Compute ΣiA ⊲ using equation (3.21) for i and A

Compute ΣiĀ ⊲ using equation (3.21) for i and Ā

δi∗ ← H(i|A)−H(i|Ā) ⊲ with H defined in (3.22)

currenti∗ ← true

A ← A∪ i⋆

return A

3.4. Implementation. A code implementing Algorithm 1 and Algorithm 2 using

TensorFlow.1.4 [19] is available at https://github.com/roxarcucci/VGPosp.git.

Instructions for running the tests and algorithms are described in the file READ-

ME.md. The algorithms were initially implemented in Python and reimplemented

later in TensorFlow in order to further improve the efficiency of the run-time through

multi-threaded, parallelised execution and automatic scalability to more computa-

tional cores. Our implemented model is represented in the form of a computational

data-flow graph that is instantiated once a session object is defined. The built-in

TensorFlow compiler identifies all dependencies within our algorithms and assigns

multi-threaded computational tasks to our resources. TensorBoard creates a visual

representation of the nodes and connections, it enables the developer to debug con-

nectivity errors. The Scalars tool that allows the tracking of any metric of interest

during model training or optimisation was also used.
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4. Results and discussion

In this section, two test cases are used to discuss our Variation Gaussian Process

for optimal sensor placement (VGPosp):

⊲ The first test case, named the sine model, is a simplified two-dimensional model

of a sine function to test the efficiency, accuracy and precision of VGP compared

to GP. The comparison between GP and VGP is done only for the sine model as

the complexity of GP is too high to be trained for a real test case.

⊲ The second test case is a real three-dimensional test case considering a room

within the Clarence Centre building located in Elephant and Castle, London, UK.

In this test case, the predictive model is the Computational Fluid Dynamics (CFD)

software Fluidity. The optimal sensor location is proposed. The benefit of using

sensors optimally located is proved by showing how the predictive model error can

be more efficiently reduced by using data assimilation technology.
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Figure 3. Training time as a function of number of training points when using a Gaussian
Process (GP) or a variation Gaussian process (VGP).

4.1. Test case 1: Sine model. This section aims to compare the efficiency, the

accuracy and the precision of GP and VGP. The test sine function used is defined

in equation (4.1).

(4.1) f(x, y) = sin
(2
3

πx
)
+ sin

(2
3

πy
)
.

In order to prove that VGP is more efficient than a GP approach, the training time

as a function of the number of training points for both methods is shown in Figure 3.

Up to 150 training points, the GP and the VGP method both take a bit less then

10 sec to be trained. However, when using more training points, i.e. more than 150
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points, the training time of the GP increases drastically, while the VGP training time

stays constant, around 10 sec, independently of the number of points. For example,

when considering 600 training points, the training time is divided by 5.5 when using

the VGP approach.

The accuracy e and the root mean squared error (also called precision), RMSE of

the modelM are:

(4.2) eM(N) =

N∑

i=1

|fTrue(xi, yi)− fM(xi, yi)|,

where N is the number of training points, and

(4.3) RMSEM(N) =

√
‖FM − FTrue‖L2

‖FTrue‖L2

,

where L2 denotes the Euclidean norm, FM and FTrue denote the vectors FM =

[fM(x1, y1), . . . , fM(xN , yN )] and FTrue = [fTrue(x1, y1), . . . , fM(xN , yN )], the True

model denotes the function in equation (4.1) and the modelM stands for GP or VGP.

0 100 200 300 400 500 600

Number of training points

(a)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

A
cc
u
ra
cy

eGP

eVGP

100 200 300 400 500 600

Number of training points

(b)

0.10

0.15

0.20

0.25

0.30

0.35

P
re
ci
si
on

RMSEGP

RMSEVGP

Figure 4. (a) Accuracy e and (b) Precision RMSE as a function of number of training points
when using a Gaussian process (GP) and a variation Gaussian process (VGP).

The accuracy (equation (4.2)) and the precision (equation (4.3)) of the two models

as a function of the number of training points are shown in Figure 4. From Figure 4a,

when using less than 150 training points, the two models highlight the worst accuracy,

i.e. the highest values. When using more than 150 training points, it can be seen than

the accuracy of GP is lower than 0.03, while the VGP accuracy is lower than 0.02.

Globally, the VGP method is slightly more accurate than GP even if the accuracy

can be considered as the same order of magnitude. However, looking at Figure 4b,

302



the GP model is more precise than the VGP. For both models, the RMSE is relatively

high when using less than 200 training points. When using more training points, the

RMSE reaches a plateau with values for the GP and VGP model of about 0.12 and

0.17, respectively.

Overall, it has been shown that the VGP method is a good trade-off between

efficiency, accuracy and precision and will then be used as the assumed tool in the

second test case.

4.2. Test case 2: Real test case.

4.2.1. Predictive model: Computational Fluid Dynamics simulation us-

ing Fluidity software. The simulated data used to train our VGPosp is obtained

using Fluidity, a parallel open-source CFD software (available at http://fluidity

project.github.io/). It uses finite elements to solve the following incompressible

three dimensional Navier-Stokes equations, continuity equation (4.4) and momentum

equation (4.5), on unstructured grids [2]:

∇ · u = 0,(4.4)

∂u

∂t
+ u · ∇u = −

1

̺
∇p+∇ · [(ν + ντ )∇u],(4.5)

where u is the resolved velocity (m/s), p is the resolved pressure (Pa), ̺ is the fluid

density (kg/m3), ν is the kinematic viscosity (m2/s) and ντ is the anisotropic eddy

viscosity (m2/s).

Turbulence is resolved using Large Eddy Simulation (LES), where the eddies

smaller than a scale ∆ are parametrised using a subgrid-scale module, while the

larger eddies are fully resolved. The subgrid-scale model in Fluidity is based on the

Smagorinsky model [39], [8].

The transport of a scalar field C (i.e., a passive tracer or pollutant concentration)

in kg/m3 is expressed using the advection-diffusion equation (4.6):

(4.6)
∂C

∂t
+∇ · (uC) = ∇ · (κC∇C) + F,

where u is the velocity vector (m/s), κC is the diffusivity tensor of the pollutant in

an excess of air (m2/s) and F represents the source terms (kg/m3/s).

The temperature field T (Kelvin) is expressed using equation (4.7):

(4.7)
∂T

∂t
+∇ · (uT ) = ∇ · (κT∇T ) +

Q

̺cp
,
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where u is the velocity vector (m/s), κT is the thermal diffusivity tensor (m
2/s), Q

represents thermal source terms (W/m3), ̺ is the fluid density (kg/m3) and cp is the

fluid specific heat capacity (J/kg/K). The behaviour of the atmospheric boundary

layer in Fluidity is represented using a turbulent inlet velocity based on a synthetic

eddy method [34], [23]. Fluidity uses mesh adaptivity where the mesh can be dynam-

ically refined, during the simulation, in areas of physical significance to the user [32].

4.2.2. Test case set up description. The test case considered in this paper is

a room within the Clarence Centre building located at London South Bank University

(LSBU) near Elephant and Castle in London, UK (Figure 5). The test room has three

windows depicting in blue in Figure 5. This test site was used to conduct a one-day

field study in January 2018 with the MAGIC project (http://www.magic-air.uk/,

[40]) during which 7 sensors were monitoring the indoor temperature and CO2 con-

centration. The CO2 sensor (Senseair AB, Sweden) operates on a non-dispersion

infrared method that determines CO2 concentration based on light absorption [31].

As the model is completely general, it could be applied to another kind of concen-

tration analysis that we can find in indoor scenarios such as radon, benzene, NO2

and others as listed into [24]. The CFD simulation performed in this paper aims to

replicate a cross ventilation scenario, where the test room windows on both sides of

the building were opened.

Figure 5. The test case room is located in Clarence Centre building in London, UK. The red
dots denote the location of sensors during a field experiment and blue rectangles
show the location of the three windows.

As shown in Figure 6, the computational domain considered in the numerical

simulations includes the entire Clarence building and the test room, as well as the

immediate building upwind in order to replicate the local flow conditions near the

windows. The mesh is defined such that the resolution is increased in the room
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(setting the grid edge length to 0.1 m) and particularly at the openings (grid edge

length set to 0.02 m). It progressively decreases in the overall domain to reach an

edge length of 10 m away from the room as shown in Figure 6, which gives an overall

number of 285,700 cells, i.e. grid points, in the mesh. The total number of nodes

within the room is about 1.5× 105.

Figure 6. Computational domain and surface mesh of the area of interest showing the
Clarence Centre and the upwind building as well as the test case room. The
blue arrows denote the wind direction.

The boundary conditions are set to replicate the experimental conditions. A log-

law turbulent inlet velocity is imposed upwind, corresponding to a wind direction

of 201◦. It is parametrised with an incoming wind velocity of 2.58 m/s at 28.5 m. No

slip boundary conditions are imposed at the bottom of the domain and on the walls

of the test room. The initial temperature is set to 19.5 ◦C inside the room and 9.1 ◦C

outside. Before opening the windows, based on sensor data, the average CO2 con-

centration in the room is set to 2.58×10−3 kg/m3 (1420 ppm) while 7.2×10−4 kg/m3

(400 ppm), is prescribed outside as a background pollution level.

The simulation was run in parallel on 20 CPUs and for an overall simulation time

of 15 min, leading to about 3500 timesteps. In this paper, the target variable is

the concentration C of CO2 within the room. As an example, the evolution of the

concentration field on different planes in the room within the room at different times

is shown in Figure 7 and Figure 8. At the beginning of the simulation, the outdoor

air enters the room gradually and concentration stratification starts to occur after 2

minutes 30 seconds. It can be seen that the concentration in the room starts to

reach a steady state after 5 minutes and does not change anymore after 15 minutes

of simulations.
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Figure 7. Concentration field of CO2 on two vertical slices in the room at different times.
The scale is between 7.2× 10−4kg/m3 (blue colour) and 2.58× 10−3kg/m3 (red
colour).
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Figure 8. Concentration field of CO2 on a horizontal plane in the room at different times.
The scale is between 7.2× 10−4kg/m3 (blue colour) and 2.58× 10−3kg/m3 (red
colour).
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(a) Sensor 1
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(b) Sensor 2
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(c) Sensor 3
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(d) Sensor 4
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(e) Sensor 5
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(f) Sensor 6
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(g) Sensor 7

Figure 9. Mutual Information parameter δi onM grid points (11×11×1) for k = 7 sensors.
The colours show the value of δi and the scale is different on each sub-figures.
Dark blue and light blue colours denote high and low δi values, respectively.

4.2.3. Results. The training set consists of 10,000 points, exceeding the amount

used in previous work by a factor of 150, see [20], [26]. The quantity and 3D spatial

positioning of the training set was sufficient to capture the dynamics of the indoor

environment. The CFD results used to train the VGP are taken between 2 min 30 sec

and 5 min, period during which the stratification of the concentration is established.

The solution of this dynamical system X in (3.1) includes the physical variables

[P, T, C], where P is the pressure, T the temperature and C, the physical variable

target, is the CO2 concentration.

The simulated training data had features with non-Gaussian likelihoods, causing

potential problems for spatial learning with Gaussian Processes. While the use of

a variational Gaussian process helps overcome this issue, we further generalised our

training data through the use of a Masked Autoregressive Flow model that transforms

the likelihoods of the input features to the family of Gaussian-distributions.

The results of the optimal sensor placement are discussed in the following. Firstly,

the scalability issues related to dense grid initialisations of set S are addressed.

Secondly, the introduction of the MCMC based fine-tuning algorithm is motivated.

Finally, the optimal sensor placement solutions provided by our proposed VGPosp

model are presented.

The placement Algorithm 2 is executed on a predefined area of interest, in which

a density parameter specifies the grid initialisation that defines set S. Figure 9

demonstrates the internal state, i.e. mutual information parameter, of the placement

310



algorithm before making a selection. For each coordinate δi is computed (Algo-

rithm 2) and the most optimal coordinate is selected into the final selection set A.

For example, in Figure 12a, the first sensor will be chosen to be located where δi is

the highest, i.e. yellow colour part. From Figure 9, it can be seen that the scale of δi

is not the same in each sub-figures and becomes narrower. Indeed, the contributions

made by earlier selections are higher, explaining why the δi quantities decrease after

more sensors are added to set S.
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Figure 10. Execution time t of Algorithm 1 as a function of the number of initial grid
points M . The y-axis is logarithmic.
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Figure 11. Percentage increase in mutual information parameter after the fine-tuning Al-
gorithm 1.

The running-times shown in Figure 10 are descriptive of the exponential com-

putational cost that is incurred from selecting a larger input set of S. However,

it cannot be expected from the selection Algorithm 1 to find the optimal locations

in continuous space when defining only distant, discrete points. In order to reduce

the time complexity of discovering optimal coordinates in continuous space, we pro-

posed an MCMC-based fine-tuning method of set S. The impact of this procedure
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is demonstrated by Figure 11, where the percentage increase in the optimisation cri-

terion, which may miss more optimal regions. For example in the case of a 7× 7× 1

grid instantiation, the fine-tuning Algorithm 1 can achieve a 3 order of magnitude
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Figure 12. Fine-tuning of grid-points and final selection coordinates. Colour represents the
mutual information parameter of placement. The colour of the point shows the
value of the Mutual Information. The crosses depict the final optimal sensor
locations.
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Figure 13. Optimal final location of seven sensors in the room of the Clarence Centre ob-
tained using the variational Gaussian process optimal sensor placement VGPosp
in Algorithm 1.

improvement in the overall mutual information, associated with our final selection

set A. This improvement is achieved after 15 grid optimisation attempts. In Fig-

ure 12, a 6× 6× 4 grid is considered associated with 40 grid optimisation attempts

for each selection. The optimal selection of 7 sensors is plotted with crosses as well
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as all modified grid positions that had achieved improved mutual information pa-

rameter values. Their colours correspond to the mutual information parameter that

the coordinate had achieved. The final optimal coordinates of the room are depicted

in Figure 13.

Data Assimilation technology is coupled with the predictive model Fluidity. Data

Assimilation uses observed data from sensors to improve and correct the numerical

results from the simulation. Seven sensors are assimilated in the predictive model.

The DA algorithm and methodology used was previously successfully coupled with

Fluidity and is presented in detail in [5], [6]. The accuracy of the DA results is

evaluating using the mean squared error:

MSE(C) =
‖C − Cv,n‖L2

‖Cv,n‖L2

,

where C is either Cn the Fluidity concentration at time step n, or CDA, the corrected

concentration using DA and Cv,n is the control variable, i.e. the true observed data.

The MSE is computed using the 7 optimal sensor locations shown in Figure 13 and

compared with the MSE obtained using 7 sensors located randomly. 2000 random

sensor positionings were performed. Assimilating the seven optimally positioned

sensors, the error of the predictive model, i.e. Fluidity, is reduced by up to three

orders of magnitude: MSE(Cn) = 0.17 and MSE(CDA) = 0.0005. Moreover, this

error is up to two orders of magnitude lower than the ones computed using random

sensors placement. In one of the worst random case scenario: MSE(CDA) = 0.023.

5. Conclusion

This work described a novel pipeline for sensor placement, incorporating Masked

Autoregressive Flows (MAF) [33] for preconditioning, a variational Gaussian pro-

cess (VGP) [41], [42] spatial model and a mutual information-based placement al-

gorithm [26]. In this paper, the alterations to the existing placement pipelines are

significant, as they introduce multiple layers of approximations in order to reduce

time complexities. More specifically, VGP was introduced for the sensor placement

pipeline to tackle the O(N3) complexity associated with traditional GP for spa-

tial modelling. Increased model generalisation was achieved with MAF that learn

nonlinear invertible transformations between complicated transformations and the

more flexible Normal distribution. All models and algorithms were implemented as
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a TensorFlow computational graph to further reduce run-times as opportunities for

parallel computation are automatically recognised by the graph compiler. Further-

more, this work proposed and developed two extension algorithms. One focused on

incorporating information and sampling environmental features from the time-series

for computing mutual information. Secondly, a wrapper algorithm was built to itera-

tively sub-sample and globally optimise the instantiated set of base grid-coordinates,

leading to a three-fold increase in mutual information associated with the final se-

lection. The combination of these two algorithms achieved stability and a global

improvement in the selection coordinates. The technologies used in this paper are

general and are not limited to the test case of sensor placement in indoor environ-

ments, even though their integrated implementation was designed accordingly. The

model can be applied in any kind of building, taking into account different concen-

trations of indoor pollution.

Acronyms

CFD: Computational Fluid Dynamics

DA: Data Assimilation

ELBO: Evidence Lower BOund

GP: Gaussian Process

IAQ: Indoor Air Quality

KL: Kullback-Leibler

LES: Large Eddy Simulation

LSBU: London South Bank University

MADE: Masked Autoencoder for Distribution Estimation

MAF: Masked Autoregressive Flows

MCMC: Markov-Chain Monte Carlo

MI: Mutual Information

NF: Normalising Flow

SGP: Sparse Variational Process

SVI: Stochastic Variational Inference

TF: TensorFlow

VGP: Variational Gaussian Process

VGPosp: Variational Gaussian Process optimal sensor placement
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[35] J.Quiñonero-Candela, C. E.Rasmussen: A unifying view of sparse approximate Gaus-
sian process regression. J. Mach. Learn. Res. 6 (2005), 1939–1959. zbl MR

[36] N.Ramakrishnan, C. Bailey-Kellogg, S. Tadepalliy, V.N. Pandey: Gaussian processes for
active data mining of spatial aggregates. Proceedings of the 2005 SIAM International
Conference on Data Mining. SIAM, Philadelphia, 2005, pp. 427–438. doi

[37] C.E.Rasmussen: Gaussian processes in machine learning. Advanced Lectures on Ma-
chine Learning. Lecture Notes in Computer Science 3176. Springer, Berlin, 2003,
pp. 63–71. doi

[38] D. J. Rezende, S.Mohamed: Variational inference with normalizing flows. Available at
https://arxiv.org/abs/1505.05770 (2015), 10 pages.

[39] J. Smagorinsky: General circulation experiments with the primitive equations I. The
basic experiment. Mon. Wea. Rev. 91 (1963), 99–164. doi

316

http://dx.doi.org/10.1111/j.1533-8525.1978.tb01183.x
http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.02.006
http://dx.doi.org/10.1016/j.atmosenv.2018.11.058
https://zbmath.org/?q=an:1225.68192
https://zbmath.org/?q=an:0042.38403
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0039968
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1016/j.buildenv.2013.03.008
http://dx.doi.org/10.1016/j.atmosenv.2012.11.060
https://zbmath.org/?q=an:1008.76041
http://dx.doi.org/10.1016/S0045-7825(00)00294-2
http://dx.doi.org/10.1007/s10546-010-9508-x
https://zbmath.org/?q=an:1222.68282
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2249877
http://dx.doi.org/10.1137/1.9781611972757.38
http://dx.doi.org/10.1007/978-3-540-28650-9_4
http://dx.doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2


[40] J. Song, S. Fan, W.Lin, L.Mottet, H.Woodward, M.Davies Wykes, R.Arcucci,
D.Xiao, J.-E. Debay, H.ApSimon, E.Aristodenou, D.Birch, M.Carpentieri, F. Fang,

M.Herzog, G.R.Hunt, R. L. Jones, C. Pain, D. Pavlidis, A.G.Robins, C. A. Short,

P. F. Linden: Natural ventilation in cities: The implications of fluid mechanics. Building
Research & Information 46 (2018), 809–828. doi

[41] M.K.Titsias: Variational learning of inducing variables in sparse Gaussian processes.
Proc. Mach. Learn. Res. 5 (2009), 567–574.

[42] M.K.Titsias: Variational Model Selection for Sparse Gaussian Process Regression. Tech-
nical report, University of Manchester, Manchester, 2009.

[43] V.H.Tran: Copula variational Bayes inference via information geometry. Available at
https://arxiv.org/abs/1803.10998 (2018), 23 pages.

[44] D.Tran, R. Ranganath, D.M.Blei: The variational Gaussian process. Available at
https://arxiv.org/abs/1511.06499 (2015), 14 pages.

[45] H.Wickham: ggplot2: Elegant Graphics for Data Analysis. Use R! Springer, Cham,
2016. zbl doi

Authors’ addresses: Gabor Tajnafoi, Rossella Arcucci (corresponding author), Data
Science Institute, Department of Computing, Imperial College London, South Kensington
Campus, London SW7 2AZ, United Kingdom, e-mail: gabor.tajnafoi18@imperial.ac.uk,
gtajnafoi@gmail.com, r.arcucci@imperial.ac.uk; Laetitia Mottet, Applied Modelling
and Computation Group, Department of Earth Science & Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, United Kingdom, e-mail: l.mottet
@imperial.ac.uk; Carolanne Vouriot, Department of Civil Engineering, Imperial Col-
lege London, 58 Princes Gate, Kensington, London SW7 1AL, United Kigdom, e-mail:
carolanne.vouriot12@imperial.ac.uk; Miguel Molina-Solana, Department of Computer
Science and AI, Universidad de Granada, 18071 Granada, Spain, and Data Science Institute,
Department of Computing, Imperial College London, South Kensington Campus, London
SW7 2AZ, United Kingdom, e-mail: miguelmolina@ugr.es; Christopher Pain, Department
of Earth Science & Engineering, Imperial College London, South Kensington Campus, Lon-
don SW7 2AZ, United Kingdom, e-mail: c.pain@imperial.ac.uk; Yi-Ke Guo, Data Science
Institute, Department of Computing, Imperial College London, South Kensington Campus,
London SW7 2AZ, United Kingdom, e-mail: y.guo@imperial.ac.uk.

317

http://dx.doi.org/10.1080/09613218.2018.1468158
https://zbmath.org/?q=an:1397.62006
http://dx.doi.org/10.1007/978-3-319-24277-4

		webmaster@dml.cz
	2021-04-19T14:39:22+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




