Previous |  Up |  Next

Article

Keywords:
distributive lattice; congruence-uniform lattice; canonical join complex; core label order; intersection property
Summary:
Distributive lattices form an important, well-behaved class of lattices. They are instances of two larger classes of lattices: congruence-uniform and semidistributive lattices. Congruence-uniform lattices allow for a remarkable second order of their elements: the core label order; semidistributive lattices naturally possess an associated flag simplicial complex: the canonical join complex. In this article we present a characterization of finite distributive lattices in terms of the core label order and the canonical join complex, and we show that the core label order of a finite distributive lattice is always a meet-semilattice.
References:
[1] Bancroft, E.: The shard intersection order on permutations. Available at https://arxiv.org/abs/1103.1910 (2011).
[2] Barnard, E.: The canonical join complex. Electron. J. Comb. 26 (2019), Research paper P1.24, 25 pages. MR 3919619 | Zbl 07032096
[3] Birkhoff, G.: Applications of lattice algebra. Proc. Camb. Philos. Soc. 30 (1934), 115-122. DOI 10.1017/S0305004100016522 | Zbl 0009.05501
[4] Birkhoff, G.: Rings of sets. Duke Math. J. 3 (1937), 443-454. DOI 10.1215/S0012-7094-37-00334-X | MR 1546000 | Zbl 0017.19403
[5] Clifton, A., Dillery, P., Garver, A.: The canonical join complex for biclosed sets. Algebra Univers. 79 (2018), Article No. 84, 29 pages. DOI 10.1007/s00012-018-0567-z | MR 3877464 | Zbl 06983724
[6] Davey, B. A., Poguntke, W., Rival, I.: A characterization of semi-distributivity. Algebra Univers. 5 (1975), 72-75. DOI 10.1007/BF02485233 | MR 0382103 | Zbl 0313.06002
[7] Day, A.: Characterizations of finite lattices that are bounded-homomorphic images of sublattices of free lattices. Can. J. Math. 31 (1979), 69-78. DOI 10.4153/CJM-1979-008-x | MR 0518707 | Zbl 0432.06007
[8] Day, A.: Congruence normality: The characterization of the doubling class of convex sets. Algebra Univers. 31 (1994), 397-406. DOI 10.1007/BF01221793 | MR 1265350 | Zbl 0804.06006
[9] Erné, M., Heitzig, J., Reinhold, J.: On the number of distributive lattices. Electron. J. Comb. 9 (2002), Research paper R24, 23 pages. MR 1912806 | Zbl 0989.05005
[10] Freese, R., Ježek, J., Nation, J. B.: Free Lattices. Mathematical Surveys and Monographs 42. AMS, Providence (1995). DOI 10.1090/surv/042 | MR 1319815 | Zbl 0839.06005
[11] Garver, A., McConville, T.: Enumerative properties of Grid-Associahedra. Available at https://arxiv.org/abs/1705.04901 (2017). MR 3678643
[12] Garver, A., McConville, T.: Oriented flip graphs of polygonal subdivisions and noncrossing tree partitions. J. Comb. Theory, Ser. A 158 (2018), 126-175. DOI 10.1016/j.jcta.2018.03.014 | MR 3800125 | Zbl 06905022
[13] Grätzer, G.: General Lattice Theory. Pure and Applied Mathematics 75. Academic Press, Harcourt Brace Jovanovich Publishers, New York-London (1978). DOI 10.1007/978-3-0348-7633-9 | MR 0509213 | Zbl 0436.06001
[14] Mühle, H.: Noncrossing partitions, Tamari lattices, and parabolic quotients of the symmetric group. Available at https://arxiv.org/abs/1809.01405 (2018). MR 4039340
[15] Mühle, H.: The core label order of a congruence-uniform lattice. Algebra Univers. 80 (2019), Article No. 10, 22 pages. DOI 10.1007/s00012-019-0585-5 | MR 3908324 | Zbl 07031055
[16] Petersen, T. K.: On the shard intersection order of a Coxeter group. SIAM J. Discrete Math. 27 (2013), 1880-1912. DOI 10.1137/110847202 | MR 3123822 | Zbl 1296.05211
[17] Reading, N.: Noncrossing partitions and the shard intersection order. J. Algebr. Comb. 33 (2011), 483-530. DOI 10.1007/s10801-010-0255-3 | MR 2781960 | Zbl 1290.05163
[18] Reading, N.: Noncrossing arc diagrams and canonical join representations. SIAM J. Discrete Math. 29 (2015), 736-750. DOI 10.1137/140972391 | MR 3335492 | Zbl 1314.05015
[19] Reading, N.: Lattice theory of the poset of regions. Lattice Theory: Special Topics and Applications. Volume 2 Birkhäuser/Springer, Basel (2016), 399-487 G. Grätzer et al. DOI 10.1007/978-3-319-44236-5_9 | MR 3645055 | Zbl 1404.06004
[20] Whitman, P. M.: Free lattices. Ann. Math. (2) 42 (1941), 325-330. DOI 10.2307/1969001 | MR 0003614 | Zbl 0024.24501
[21] Whitman, P. M.: Free lattices. II. Ann. Math. (2) 43 (1942), 104-115. DOI 10.2307/1968883 | MR 0006143 | Zbl 0063.08232
Partner of
EuDML logo