[1] Abbassi, M. T. K.: Métriques naturelles sur le fibré tangent à une variété Riemannienne. Editions universitaires europeennes, Paris (2012), French.
[5] Abbassi, M. T. K., Kowalski, O.:
On $g$-natural metrics with constant scalar curvature on unit tangent sphere bundles. Topics in Almost Hermitian Geometry and Related Fields World Scientific, Hackensack (2005), 1-29.
DOI 10.1142/9789812701701_0001 |
MR 2181488 |
Zbl 1107.53023
[9] Abbassi, M. T. K., Sarih, M.:
On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math., Brno 41 (2005), 71-92.
MR 2142144 |
Zbl 1114.53015
[19] Hall, G. S.:
Symmetries and Curvature Structure in General Relativity. World Scientific Lecture Notes in Physics 46, World Scientific, River Edge (2004).
DOI 10.1142/1729 |
MR 2109072 |
Zbl 1054.83001
[20] Hedayatian, S., Bidabad, B.:
Conformal vector fields on tangent bundle of a Riemannian manifold. Iran. J. Sci. Technol, Trans. A, Sci. 29 (2005), 531-539.
MR 2239754 |
Zbl 1106.53012
[24] Kowalski, O., Sekizawa, M.:
Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles - a classification. Bull. Tokyo Gakugei Univ., Sect. IV, Ser. Math. Nat. Sci. 40 (1988), 1-29.
MR 0974641 |
Zbl 0656.53021