Previous |  Up |  Next

Article

Title: Inverse property of nonassociative abelian extensions (English)
Author: Figula, Ágota
Author: Nagy, Péter T.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 4
Year: 2020
Pages: 501-511
Summary lang: English
.
Category: math
.
Summary: Our paper deals with the investigation of extensions of commutative groups by loops so that the quasigroups that result in the multiplication between cosets of the kernel subgroup are T-quasigroups. We limit our study to extensions in which the quasigroups determining the multiplication are linear functions without constant term, called linear abelian extensions. We characterize constructively such extensions with left-, right-, or inverse properties using a general construction according to an equivariant group action principle. We show that the obtained constructions can be simplified for ordered loops. Finally, we apply our characterization to determine the possible cardinalities of the component loop of finite linear abelian extensions. (English)
Keyword: loop
Keyword: nonassociative extensions of abelian groups
Keyword: linear abelian extensions
Keyword: left property
Keyword: right property
Keyword: inverse property
MSC: 20N05
idZBL: Zbl 07332724
idMR: MR4230955
DOI: 10.14712/1213-7243.2020.040
.
Date available: 2021-02-25T12:40:55Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148660
.
Reference: [1] Albert A. A.: Quasigroups. II.Trans. Amer. Math. Soc. 55 (1944), 401–419. MR 0010597, 10.1090/S0002-9947-1944-0010597-1
Reference: [2] Bruck R. H.: Some results in the theory of linear non-associative algebras.Trans. Amer. Math. Soc. 56 (1944), 141–199. MR 0011083, 10.1090/S0002-9947-1944-0011083-5
Reference: [3] Kalhoff F. B., Prieß-Krampe S. H. G.: Ordered loops and ordered planar ternary rings.Chap. XIV in Quasigroups and Loops: Theory and Applications, Sigma Ser. Pure Math., 8, Heldermann, Berlin, 1990, pages 445–466. MR 1125820
Reference: [4] Nagy P. T., Strambach K.: Schreier loops.Czechoslovak Math. J. 58 (2008), no. 3, 759–786. Zbl 1166.20058, MR 2455937, 10.1007/s10587-008-0050-7
Reference: [5] Němec P., Kepka T.: T-quasigroups. I.Acta Univ. Carolin. Math. Phys. 12 (1971), no. 1, 39–49. MR 0320206
Reference: [6] Němec P., Kepka T.: T-quasigroups. II.Acta Univ. Carolin. Math. Phys. 12 (1972), no. 2, 31–49. MR 0320206
Reference: [7] Pflugfelder H. O.: Quasigroups and Loops: Introduction.Sigma Series in Pure Mathematics, 7, Heldermann Verlag, Berlin, 1990. Zbl 0715.20043, MR 1125767
Reference: [8] Shcherbacov V.: Elements of quasigroup theory and applications.Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, 2017. MR 3644366
Reference: [9] Stanovský D., Vojtěchovský P.: Abelian Extensions and Solvable Loops.Results Math. 66 (2014), no. 3–4, 367–384. MR 3272634, 10.1007/s00025-014-0382-6
Reference: [10] Stanovský D., Vojtěchovský P.: Central and medial quasigroups of small order.Bul. Acad. Ştiinţe Repub. Mold. Mat. 80 (2016), no. 1, 24–40. Zbl 1349.20075, MR 3528005
Reference: [11] Suvorov N. M., Kryuchkov N. I.: Examples of some quasigroups and loops admitting only discrete topologization.Sib. Math. J. 17 (1976), 367–369. MR 0412318, 10.1007/BF00967584
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-4_7.pdf 198.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo