Previous |  Up |  Next

Article

Keywords:
loop; nonassociative extensions of abelian groups; linear abelian extensions; left property; right property; inverse property
Summary:
Our paper deals with the investigation of extensions of commutative groups by loops so that the quasigroups that result in the multiplication between cosets of the kernel subgroup are T-quasigroups. We limit our study to extensions in which the quasigroups determining the multiplication are linear functions without constant term, called linear abelian extensions. We characterize constructively such extensions with left-, right-, or inverse properties using a general construction according to an equivariant group action principle. We show that the obtained constructions can be simplified for ordered loops. Finally, we apply our characterization to determine the possible cardinalities of the component loop of finite linear abelian extensions.
References:
[1] Albert A. A.: Quasigroups. II. Trans. Amer. Math. Soc. 55 (1944), 401–419. DOI 10.1090/S0002-9947-1944-0010597-1 | MR 0010597
[2] Bruck R. H.: Some results in the theory of linear non-associative algebras. Trans. Amer. Math. Soc. 56 (1944), 141–199. DOI 10.1090/S0002-9947-1944-0011083-5 | MR 0011083
[3] Kalhoff F. B., Prieß-Krampe S. H. G.: Ordered loops and ordered planar ternary rings. Chap. XIV in Quasigroups and Loops: Theory and Applications, Sigma Ser. Pure Math., 8, Heldermann, Berlin, 1990, pages 445–466. MR 1125820
[4] Nagy P. T., Strambach K.: Schreier loops. Czechoslovak Math. J. 58 (2008), no. 3, 759–786. DOI 10.1007/s10587-008-0050-7 | MR 2455937 | Zbl 1166.20058
[5] Němec P., Kepka T.: T-quasigroups. I. Acta Univ. Carolin. Math. Phys. 12 (1971), no. 1, 39–49. MR 0320206
[6] Němec P., Kepka T.: T-quasigroups. II. Acta Univ. Carolin. Math. Phys. 12 (1972), no. 2, 31–49. MR 0320206
[7] Pflugfelder H. O.: Quasigroups and Loops: Introduction. Sigma Series in Pure Mathematics, 7, Heldermann Verlag, Berlin, 1990. MR 1125767 | Zbl 0715.20043
[8] Shcherbacov V.: Elements of quasigroup theory and applications. Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, 2017. MR 3644366
[9] Stanovský D., Vojtěchovský P.: Abelian Extensions and Solvable Loops. Results Math. 66 (2014), no. 3–4, 367–384. DOI 10.1007/s00025-014-0382-6 | MR 3272634
[10] Stanovský D., Vojtěchovský P.: Central and medial quasigroups of small order. Bul. Acad. Ştiinţe Repub. Mold. Mat. 80 (2016), no. 1, 24–40. MR 3528005 | Zbl 1349.20075
[11] Suvorov N. M., Kryuchkov N. I.: Examples of some quasigroups and loops admitting only discrete topologization. Sib. Math. J. 17 (1976), 367–369. DOI 10.1007/BF00967584 | MR 0412318
Partner of
EuDML logo