[1] Bartels, S., Jensen, M., Müller, R.:
Discontinuous Galerkin finite element convergence for incompressible miscible displacement problems of low regularity. SIAM J. Numer. Anal. 47 (2009), 3720-3743.
DOI 10.1137/070712079 |
MR 2576518 |
Zbl 1410.76154
[3] Bradji, A., Fuhrmann, J.:
Some abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial meshes. Appl. Math., Praha 58 (2013), 1-38.
DOI 10.1007/s10492-013-0001-y |
MR 3022767 |
Zbl 1274.65251
[5] Chainais-Hillairet, C., Droniou, J.:
Convergence analysis of a mixed finite volume scheme for an elliptic-parabolic system modeling miscible fluid flows in porous media. SIAM J. Numer. Anal. 45 (2007), 2228-2258.
DOI 10.1137/060657236 |
MR 2346377 |
Zbl 1146.76034
[7] Chainais-Hillairet, C., Krell, S., Mouton, A.:
Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media. Numer. Methods Partial Differ. Equations 31 (2015), 723-760.
DOI 10.1002/num.21913 |
MR 3332290 |
Zbl 1325.76128
[8] J. Douglas, Jr.:
The numerical simulation of miscible displacement in porous media. Computational Methods in Nonlinear Mechanics North-Holland, Amsterdam (1980), 225-237.
MR 0576907 |
Zbl 0439.76087
[9] J. Douglas, Jr.:
Numerical methods for the flow of miscible fluids in porous media. Numerical Methods in Coupled Systems Wiley Series in Numerical Methods in Engineering. Wiley, Chichester (1984), 405-439.
Zbl 0585.76138
[13] Ewing, R. E., Russell, T. F., Wheeler, M. F.:
Simulation of miscible displacement using mixed methods and a modified method of characteristics. SPE Reservoir Simulation Symposium Society of Petroleum Engineers, San Francisco (1983), ID SPE-12241-MS.
DOI 10.2118/12241-MS |
MR 0770577
[14] Ewing, R. E., Russell, T. F., Wheeler, M. F.:
Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput. Methods Appl. Mech. Eng. 47 (1984), 73-92 (1984).
DOI 10.1016/0045-7825(84)90048-3 |
MR 0777394 |
Zbl 0545.76131
[16] Eymard, R., Gallouët, T., Herbin, R.:
Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: A scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (2010), 1009-1043.
DOI 10.1093/imanum/drn084 |
MR 2727814 |
Zbl 1202.65144
[17] Eymard, R., Handlovičová, A., Herbin, R., Mikula, K., Stašová, O.:
Applications of approximate gradient schemes for nonlinear parabolic equations. Appl. Math., Praha 60 (2015), 135-156.
DOI 10.1007/s10492-015-0088-4 |
MR 3320342 |
Zbl 1340.65187
[20] Russell, T. F.:
Finite elements with characteristics for two-component incompressible miscible displacement. SPE Reservoir Simulation Symposium Society of Petroleum Engineers, New Orleans (1982), ID SPE-10500-MS.
DOI 10.2118/10500-MS
[22] Wang, H., Liang, D., Ewing, R. E., Lyons, S. L., Qin, G.:
An approximation to miscible fluid flows in porous media with point sources and sinks by an Eulerian-Lagrangian localized adjoint method and mixed finite element methods. SIAM J. Sci. Comput. 22 (2000), 561-581.
DOI 10.1137/S1064827598349215 |
MR 1780614 |
Zbl 0988.76054
[23] Wang, H., Liang, D., Ewing, R. E., Lyons, S. L., Qin, G.:
An improved numerical simulator for different types of flows in porous media. Numer. Methods Partial Differ. Equations 19 (2003), 343-362.
DOI 10.1002/num.10045 |
MR 1969198 |
Zbl 1079.76044