[2] Armentano, M. G., Durán, R. G.:
Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. ETNA, Electron. Trans. Numer. Anal. 17 (2004), 93-101.
MR 2040799 |
Zbl 1065.65127
[3] Babuška, I., Osborn, J.:
Eigenvalue problems. Finite Element Methods (Part 1) Handbook of Numererical Analysis II. North-Holland, Amsterdam (1991), 641-787.
MR 1115240 |
Zbl 0875.65087
[5] Bramble, J. H., Osborn, J. E.:
Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations A. K. Azis Academic Press, New York (1972), 387-408.
DOI 10.1016/B978-0-12-068650-6.50019-8 |
MR 0431740 |
Zbl 0264.35055
[18] Li, Y.:
Lower approximation of eigenvalues by the nonconforming finite element method. Math. Numer. Sin. 30 (2008), 195-200 Chinese.
MR 2437993 |
Zbl 1174.65514
[23] Lin, Q., Xie, H., Luo, F., Li, Y., Yang, Y.:
Stokes eigenvalue approximations from below with nonconforming mixed finite element methods. Math. Pract. Theory 40 (2010), 157-168.
MR 2768711
[25] Luo, F., Lin, Q., Xie, H.:
Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods. Sci. China, Math. 55 (2012), 1069-1082.
DOI 10.1007/s11425-012-4382-2 |
MR 2912496 |
Zbl 1261.65112
[26] Oden, J. T., Reddy, J. N.:
An Introduction to the Mathematical Theory of Finite Elements. Pure and Applied Mathematics. Wiley-Interscience, New York (1976).
MR 0461950 |
Zbl 0336.35001
[28] Šebestová, I., Vejchodský, T.:
Two-sided bounds for eigenvalues of differential operators with applications to Friedrichs, Poincaré, trace, and similar constants. SIAM J. Numer. Anal. 52 (2014), 308-329.
DOI 10.1137/13091467X |
MR 3163245 |
Zbl 1287.35050
[33] Yang, Y., Zhang, Y., Bi, H.:
A type of adaptive $C^0$ non-conforming finite element method for the Helmholtz transmission eigenvalue problem. Comput. Methods Appl. Mech. Eng. 360 (2020), Article ID 112697, 20 pages.
DOI 10.1016/j.cma.2019.112697 |
MR 4049892 |
Zbl 07194504
[36] Zhang, Z., Yang, Y., Chen, Z.:
Eigenvalue approximation from below by Wilson's element. Math. Numer. Sin. 29 (2007), 319-321 Chinese.
MR 2370469 |
Zbl 1142.65435