[2] Godsil, Ch., Royle, G.:
Algebraic Graph Theory. Springer, Graduate Texts in Mathematics 207, 2001.
MR 1829620 |
Zbl 0968.05002
[3] Hemmecke, R., Morton, J., Shiu, A., Sturmfels, B., Wienand, O.:
Three counter-examples on semi-graphoids. Combinat. Probab. Comput. 17 (2008), 2, 239-257.
DOI 10.1017/S0963548307008838 |
MR 2396350
[5] Lněnička, R., Matúš, F.:
On Gaussian conditional independence structures. Kybernetika 43 (2007), 3, 327-342.
MR 2362722
[11] Sadeghi, K.:
Faithfulness of probability distributions and graphs. J. Machine Learning Res. 18 (2017), 1, 5429-5457.
MR 3763782
[12] Šimecek, P.: Classes of gaussian, discrete and binary representable independence models have no finite characterization. In: Proc. Prague Stochastics 2006, volume 400, pp. 622-631.
[13] Sörensson, N., Een, N.: MiniSat v1.13 - A SAT Solver with Conflict-Clause Minimization, 2005.
[15] Developers, The Sage: SageMath, the Sage Mathematics Software System (Version 8.0), 2017.
[16] Thurley, M.:
sharpSAT - Counting Models with Advanced Component Caching and Implicit BCP. In: Theory and Applications of Satisfiability Testing - SAT 2006 (A. Biere and C. P. Gomes, eds.), Springer, Berlin 2006, pp. 424-429.
DOI 10.1007/11814948_38 |
MR 2265424
[17] Toda, T., Soh, T.:
Implementing efficient all solutions SAT solvers. J. Experiment. Algorithm. 21 (2016), 1-44.
DOI 10.1145/2975585 |
MR 3568340
[18] Welsh, D. J. A.:
Matroid Theory. Courier Corporation, 2010.
MR 0427112