Previous |  Up |  Next

Article

Keywords:
full conditional independence; markov random field; polymatroids
Summary:
In this paper, we characterise and classify a list of full conditional independences via the structure of the induced set of vanishing atoms. Construction of Markov random subfield and minimal characterisation of polymatroids satisfying a MRF will also be given.
References:
[1] Blake, A., Kohli, P., Rother, C.: Markov random fields for vision and image processing. MIT Press, 2011. DOI  | MR 2920522
[2] Chan, T. H., Thakor, S., Grant, A.: Minimal characterisation of Shannon-type inequalities under functional dependence and full conditional independence structures. IEEE Trans. Inform. Theory 65 (2019), 7, 4041-4051. DOI  | MR 3964839
[3] Chen, M., Cho, J., Zhao, H.: Incorporating biological pathways via a Markov random field model in genome-wide association studies. PLOS Genetics 7 (2011), 1-13. DOI 
[4] Doyle, L. E., Kokaram, A. C., Doyle, S. J., Forde, T. K.: Ad hoc networking, Markov random fields, and decision making. IEEE Signal Process. Mag. 23 (2006), 63-73. DOI 
[5] Geiger, D., Pearl, J.: Logical and algorithmic properties of conditional independence and graphical models. Ann. Statist. 21 (1993), 4, 2001-2021. DOI  | MR 1245778
[6] Malvestuto, F.: A unique formal system for binary decompositions of database relations, probability distributions, and graphs. Inform. Sci. 59 (1992), 1, 21-52. DOI  | MR 1128204
[7] Snijders, T. A.: Statistical models for social networks. Ann. Rev. Sociology 37 (2011), 1, 131-153. DOI  | MR 3074604
[8] Wang, T., Krim, H., Viniotis, Y.: A generalized Markov graph model: Application to social network analysis. IEEE J. Selected Topics Signal Process. 7 (2013), 318-332. DOI 
[9] Yeung, R. W.: A new outlook on Shannon's information measures. IEEE Trans. Inform. Theory 37 (1991), 466-474. DOI  | MR 1145812
[10] Yeung, R. W.: Information Theory and Network Coding. Springer, 2008.
[11] Yeung, R. W., Al-Bashabsheh, A., Chen, C., Chen, Q., Moulin, P.: On information-theoretic characterizations of Markov random fields and subfields. IEEE Trans. Inform. Theory 65 (2019), 1493-1511. DOI  | MR 3923182
[12] Yeung, R. W., Lee, T. T., Ye, Z.: Information-theoretic characterizations of conditional mutual independence and markov random fields. IEEE Trans. Inform. Theory 48 (2002), 1996-2011. DOI  | MR 1930006
Partner of
EuDML logo