Previous |  Up |  Next

Article

Keywords:
multi-information; mutual information; divergence maximization; marginal specification problem; transportation polytope
Summary:
We investigate the sets of joint probability distributions that maximize the average multi-information over a collection of margins. These functionals serve as proxies for maximizing the multi-information of a set of variables or the mutual information of two subsets of variables, at a lower computation and estimation complexity. We describe the maximizers and their relations to the maximizers of the multi-information and the mutual information.
References:
[1] Alemi, A., Fischer, I., Dillon, J., Murphy, K.: Deep variational information bottleneck. In: ICLR, 2017.
[2] Ay, N.: An information-geometric approach to a theory of pragmatic structuring. Ann. Probab. 30 (2002), 1, 416-436. DOI 10.1214/aop/1020107773 | MR 1894113 | Zbl 1010.62007
[3] Ay, N.: Locality of global stochastic interaction in directed acyclic networks. Neural Comput. 14 (2002), 12, 2959-2980. DOI 10.1162/089976602760805368 | Zbl 1079.68582
[4] Ay, N., Bertschinger, N., Der, R., Güttler, F., Olbrich, E.: Predictive information and explorative behavior of autonomous robots. Europ. Phys. J. B 63 (2008), 3, 329-339. DOI 10.1140/epjb/e2008-00175-0 | MR 2421556
[5] Ay, N., Knauf, A.: Maximizing multi-information. Kybernetika 42 (2006), 5, 517-538. MR 2283503 | Zbl 1249.82011
[6] Baldassarre, G., Mirolli, M.: Intrinsically motivated learning systems: an overview. In: Intrinsically motivated learning in natural and artificial systems, Springer 2013, pp. 1-14. DOI 10.1007/978-3-642-32375-1_1
[7] Baudot, P., Tapia, M., Bennequin, D., Goaillard, J.-M.: Topological information data analysis. Entropy 21 (2019), 9, 869. DOI 10.3390/e21090869 | MR 4016406
[8] Bekkerman, R., Sahami, M., Learned-Miller, E.: Combinatorial markov random fields. In: European Conference on Machine Learning, Springer 2006, pp. 30-41. DOI 10.1007/11871842_8 | MR 2336649
[9] Belghazi, M. I., Baratin, A., Rajeshwar, S., Ozair, S., Bengio, Y., Courville, A., Hjelm, D.: Mutual information neural estimation. In: Proc. 35th International Conference on Machine Learning (J. Dy and A. Krause, eds.), Vol. 80 of Proceedings of Machine Learning Research, pp. 531-540, Stockholm 2018. PMLR.
[10] Bertschinger, N., Rauh, J., Olbrich, E., Jost, J., Ay, N.: Quantifying unique information. Entropy 16 (2014), 4, 2161-2183. DOI 10.3390/e16042161 | MR 3195286
[11] Bialek, W., Nemenman, I., Tishby, N.: Predictability, complexity, and learning. Neural Comput. 13 (2001), 11, 2409-2463. DOI 10.1162/089976601753195969
[12] Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T., Efros, A. A.: Large-scale study of curiosity-driven learning. In: ICLR, 2019.
[13] Buzzi, J., Zambotti, L.: Approximate maximizers of intricacy functionals. Probab. Theory Related Fields 153 (2012), 3-4, 421-440. DOI 10.1007/s00440-011-0350-y | MR 2948682
[14] Chentanez, N., Barto, A. G., Singh, S. P.: Intrinsically motivated reinforcement learning. In: Adv. Neural Inform. Process. Systems 2005, pp. 1281-1288. DOI 10.21236/ada440280
[15] Crutchfield, J. P., Feldman, D. P.: Synchronizing to the environment: Information-theoretic constraints on agent learning. Adv. Complex Systems 4 (2001), 02n03, 251-264. DOI 10.1142/s021952590100019x | MR 1873760
[16] Loera, J. de: Transportation polytopes. DOI 
[17] Friedman, N., Mosenzon, O., Slonim, N., Tishby, N.: Multivariate information bottleneck. In: Proc. Seventeenth conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers Inc., 2001, pp. 152-161.
[18] Gabrié, M., Manoel, A., Luneau, C., Barbier, j., Macris, N., Krzakala, F., Zdeborová, L.: Entropy and mutual information in models of deep neural networks. In: Advances in Neural Information Processing Systems 31 (S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.), Curran Associates, Inc. 2018, pp. 1821-1831. MR 3841726
[19] Gao, S., Steeg, G. Ver, Galstyan, A.: Efficient estimation of mutual information for strongly dependent variables. In: Artificial Intelligence and Statistics 2015, pp. 277-286.
[20] Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Bachman, P., Trischler, A., Y. Bengio.: Learning deep representations by mutual information. Representations, maximization. In International Conference on Learning. 2019.
[21] Hosten, S., Sullivant, S.: Gröbner bases and polyhedral geometry of reducible and cyclic models. J. Comb. Theory Ser. A 100 (2002), 2, 277-301. DOI 10.1006/jcta.2002.3301 | MR 1940337
[22] Jakulin, A., Bratko, I.: Quantifying and visualizing attribute interactions: An approach based on entropy. 2003.
[23] Klyubin, A. S., Polani, D., Nehaniv, C. L.: Empowerment: A universal agent-centric measure of control. In: 2005 IEEE Congress on Evolutionary Computation, Vol. 1, IEEE 2005, pp. 128-135.
[24] Kraskov, A., Stögbauer, H./, Grassberger, P.: Estimating mutual information. Phys. Rev. E 69 (2004), 6, 066138. DOI 10.1103/physreve.69.066138 | MR 2096503
[25] Matúš, F.: Maximization of information divergences from binary i.i.d. sequences. In: Proc. IPMU 2004 2 (2004), pp. 1303-1306.
[26] Matúš, F.: Divergence from factorizable distributions and matroid representations by partitions. IEEE Trans. Inf. Theor. 55 (2009), 12, 5375-5381. DOI 10.1109/tit.2009.2032806 | MR 2597169
[27] Matúš, F., Ay, N.: On maximization of the information divergence from an exponential family. In: Proc. 6th Workshop on Uncertainty Processing: Oeconomica 2003, Hejnice 2003, pp. 199-204.
[28] Matúš, F., Rauh, J.: Maximization of the information divergence from an exponential family and criticality. In: 2011 IEEE International Symposium on Information Theory Proceedings 2011, pp. 903-907. DOI 10.1109/isit.2011.6034269 | MR 2817016
[29] McGill, W.: Multivariate information transmission. Trans. IRE Profess. Group Inform. Theory 4 (1054), 4, 93-111. DOI 10.1109/tit.1954.1057469 | MR 0088155
[30] Mohamed, S., Rezende, D. J.: Variational information maximisation for intrinsically motivated reinforcement learning. In: Advances in Neural Information Processing Systems 2015, 2125-2133, 2015.
[31] Montúfar, G.: Universal approximation depth and errors of narrow belief networks with discrete units. Neural Comput. 26 (2014), 7, 1386-1407. DOI 10.1162/neco\_a\_00601 | MR 3222078
[32] Montúfar, G., Ghazi-Zahedi, K., Ay, N.: A theory of cheap control in embodied systems. PLOS Comput. Biology 11 (2015), 9, 1-22. DOI 10.1371/journal.pcbi.1004427
[33] Montúfar, G., Ghazi-Zahedi, K., Ay, N.: Information theoretically aided reinforcement learning for embodied agents. arXiv preprint arXiv:1605.09735, 2016.
[34] Montúfar, G., Rauh, J., Ay, N.: Expressive power and approximation errors of restricted Boltzmann machines. In: Advances in Neural Information Processing Systems 2011, pp. 415-423.
[35] Montúfar, G., Rauh, J., Ay, N.: Maximal information divergence from statistical models defined by neural networks. In: Geometric Science of Information GSI 2013 (F. Nielsen and F. Barbaresco, eds.), Lecture Notes in Computer Science 3085 Springer 2013, pp. 759-766. DOI 10.1007/978-3-642-40020-9_85 | MR 3126126
[36] Rauh, J.: Finding the maximizers of the information divergence from an exponential family. IEEE Trans. Inform. Theory 57 (2011), 6, 3236-3247. DOI 10.1109/tit.2011.2136230 | MR 2817016
[37] Rauh, J.: Finding the Maximizers of the Information Divergence from an Exponential Family. PhD. Thesis, Universität Leipzig 2011. MR 2817016
[38] Ince, R. A. A., Quantities, S. Panzeri, Schultz, S. R.: Summary of Information Theoretic. New York, pages 1-6, Springer, 2013.
[39] Roulston, M. S.: Estimating the errors on measured entropy and mutual information. Physica D: Nonlinear Phenomena 125 (1999), 3-4, 285-294. DOI 10.1016/s0167-2789(98)00269-3
[40] Schossau, J., Adami, C., Hintze, A.: Information-theoretic neuro-correlates boost evolution of cognitive systems. Entropy 18 (2015), 1, 6. DOI 10.3390/e18010006
[41] Slonim, N., Atwal, G. S., Tkacik, G., Bialek, W.: Estimating mutual information and multi-information in large networks. arXiv preprint cs/0502017, 2005.
[42] Slonim, N., Friedman, N., Tishby, N.: Multivariate information bottleneck. Neural Comput. 18 (2006), 8, 1739-1789. DOI 10.1162/neco.2006.18.8.1739 | MR 2230853
[43] Still, S., Precup, D.: An information-theoretic approach to curiosity-driven reinforcement learning. Theory Biosci. 131 (2012), 3, 139-148. DOI 10.1007/s12064-011-0142-z
[44] Developers, The Sage: SageMath, the Sage Mathematics Software System (Version 8.7), 2019. https://www.sagemath.org
[45] Tishby, N., Pereira, F. C., Bialek, W.: The information bottleneck method. In: Proc. 37th Annual Allerton Conference on Communication, Control and Computing 1999, pp. 368-377.
[46] Vergara, J. R., Estévez, P. A.: A review of feature selection methods based on mutual information. Neural Comput. Appl. 24 (2014), 1, 175-186. DOI 10.1007/s00521-013-1368-0
[47] Watanabe, S.: Information theoretical analysis of multivariate correlation. IBM J. Res. Develop. 4 (1960), 1, 66-82. DOI 10.1147/rd.41.0066 | MR 0109755
[48] Witsenhausen, H. S., Wyner, A. D.: A conditional entropy bound for a pair of discrete random variables. IEEE Trans. Inform. Theory 21 (1075), 5, 493-501. DOI 10.1109/tit.1975.1055437 | MR 0381861
[49] Yemelichev, V., Kovalev, M., Kravtsov, M.: Polytopes, Graphs and Optimisation. Cambridge University Press, 1984. MR 0744197
[50] Zahedi, K., Ay, N., Der, R.: Higher coordination with less control: A result of information maximization in the sensorimotor loop. Adaptive Behavior 18 (2010), 3-4, 338-355. DOI 10.1177/1059712310375314
[51] Zahedi, K., Martius, G., Ay, N.: Linear combination of one-step predictive information with an external reward in an episodic policy gradient setting: a critical analysis. Front. Psychol. (2013), 4, 801. DOI 10.3389/fpsyg.2013.00801
Partner of
EuDML logo