Previous |  Up |  Next

Article

Keywords:
matroid representations; partition representations; Dowling geometries; Frobenius groups
Summary:
We prove that a rank $\geq 3$ Dowling geometry of a group $H$ is partition representable if and only if $H$ is a Frobenius complement. This implies that Dowling group geometries are secret-sharing if and only if they are multilinearly representable.
References:
[1] Beimel, A., Ben-Efraim, A., Padró, C., Tyomkin, I.: Multi-linear secret-sharing schemes. Theory Cryptogr. Conf. 14 (2014), 394-418. DOI 10.1007/978-3-642-54242-8_17 | MR 3183548
[2] Ben-Efraim, A.: Secret-sharing matroids need not be Algebraic. Discrete Math. 339 (2015), 8, 2136-2145. DOI 10.1016/j.disc.2016.02.012 | MR 3500143
[3] Brickell, E. F., Davenport, D. M.: On the classification of ideal secret sharing schemes.
[4] Brown, R.: Frobenius groups and classical maximal orders. Memoirs Amer. Math. Soc. 151 (2001), 717. DOI 10.1090/memo/0717 | MR 1828640
[5] Dowling, T. A.: A class of geometric lattices based on finite groups. J. Combinat. Theory, Ser. B 14 (1973), 61-86. DOI 10.1016/s0095-8956(73)80007-3 | MR 0307951
[6] Evans, D. M., Hrushovski, E.: Projective planes in algebraically closed fields. Proc. London Math. Soc. 62 (1989), 3, 1-24. DOI 10.1112/plms/s3-62.1.1 | MR 1078211
[7] Feit, W.: Characters of Finite Groups. W. A. Benjamin Company, Inc., New York 1967. MR 0219636
[8] Matúš, F.: Matroid representations by partitions. Discrete Math. 203 (1999), 169-194. DOI 10.1016/s0012-365x(99)00004-7 | MR 1696241
[9] Jacobson, N.: Basic Algebra II. (Second Edition). W. H. Freeman and Co., New York 1989. MR 1009787
[10] Oxley, J. G.: Matroid Theory. (Second Edition). Oxford University Press Inc., New York 2011. DOI 10.1093/acprof:oso/9780198566946.001.0001 | MR 2849819
[11] Passman, D. S.: Permutation Groups. Dover Publications, Inc. Mineola, New York 2012. MR 2963408
[12] Pendavingh, R. A., Zwam, S. H. M. van: Skew partial fields, multilinear representations of matroids, and a matrix tree theorem. Adv. Appl. Math. 50 (2013), 1, 201-227. DOI 10.1016/j.aam.2011.08.003 | MR 2996392
[13] Seymour, P. D.: On secret-sharing matroids. J. Combinat. Theory, Ser. B 56 (1992), 69-73. DOI 10.1016/0095-8956(92)90007-k | MR 1182458
[14] Simonis, J., Ashikhmin, A.: Almost affine codes. Designs Codes Cryptogr. 14 (1998), 2, 179-197. DOI 10.1023/a:1008244215660 | MR 1614357
[15] Suzuki, M.: Group Theory I. Springer-Verlag, Berlin 1982. MR 0648772
[16] Vertigan, D.: Dowling Geometries representable over rings. Ann. Combinat. 19 (2015), 225-233. DOI 10.1007/s00026-015-0250-4 | MR 3319870
Partner of
EuDML logo