Previous |  Up |  Next

Article

Keywords:
commutative Banach algebra; socle; kh-socle; inessential element
Summary:
Let $\mathcal {A}$ be a commutative complex semisimple Banach algebra. Denote by ${\rm kh}({\rm soc}(\mathcal {A}))$ the kernel of the hull of the socle of $\mathcal {A}$. In this work we give some new characterizations of this ideal in terms of minimal idempotents in $\mathcal {A}$. This allows us to show that a ``result'' from Riesz theory in commutative Banach algebras is not true.
References:
[1] Aiena, P.: Fredholm and Local Spectral Theory, with Applications to Multipliers. Kluwer Academic Publishers, Dordrecht (2004). DOI 10.1007/1-4020-2525-4 | MR 2070395 | Zbl 1077.47001
[2] Alexander, J. C.: Compact Banach algebras. Proc. Lond. Math. Soc., III. Ser. 18 (1968), 1-18. DOI 10.1112/plms/s3-18.1.1 | MR 0229040 | Zbl 0184.16502
[3] Al-Moajil, A. H.: The compactum of a semi-simple commutative Banach algebra. Int. J. Math. Math. Sci. 7 (1984), 821-822. DOI 10.1155/s0161171284000855 | MR 0780844 | Zbl 0599.46072
[4] Androulakis, G., Schlumprecht, T.: Strictly singular, non-compact operators exist on the space of Gowers and Maurey. J. Lond. Math. Soc., II. Ser. 64 (2001), 655-674. DOI 10.1112/s0024610701002769 | MR 1843416 | Zbl 1015.46007
[5] Aupetit, B.: A Primer on Spectral Theory. Universitext. Springer, New York (1991). DOI 10.1007/978-1-4612-3048-9 | MR 1083349 | Zbl 0715.46023
[6] Aupetit, B., Mouton, H. du T.: Spectrum preserving linear mappings in Banach algebras. Studia Math. 109 (1994), 91-100. DOI 10.4064/sm-109-1-91-100 | MR 1267714 | Zbl 0829.46039
[7] Barnes, B. A.: A generalized Fredholm theory for certain maps in the regular representations of an algebra. Can. J. Math. 20 (1968), 495-504. DOI 10.4153/cjm-1968-048-2 | MR 0232208 | Zbl 0159.18502
[8] Barnes, B. A.: The Fredholm elements of a ring. Can. J. Math. 21 (1969), 84-95. DOI 10.4153/cjm-1969-009-1 | MR 0237542 | Zbl 0175.44101
[9] Barnes, B. A., Murphy, G. J., Smyth, M. R. F., West, T. T.: Riesz and Fredholm Theory in Banach Algebras. Research Notes in Mathematics 67. Pitman Advanced Publishing Program, Boston (1982). MR 0668516 | Zbl 0534.46034
[10] Boudi, N., Hadder, Y.: On linear maps preserving generalized invertibility and related properties. J. Math. Anal. Appl. 345 (2008), 20-25. DOI 10.1016/j.jmaa.2008.03.066 | MR 2422630 | Zbl 1178.47023
[11] Puhl, J.: The trace of finite and nuclear elements in Banach algebras. Czech. Math. J. 28 (1978), 656-676. DOI 10.21136/CMJ.1978.101567 | MR 0506439 | Zbl 0394.46041
[12] Rickart, C. E.: General Theory of Banach Algebras. The University Series in Higher Mathematics. D. Van Nostrand, Princeton (1960). MR 0115101 | Zbl 0095.09702
[13] Smyth, M. R. F.: Riesz theory in Banach algebras. Math. Z. 145 (1975), 145-155. DOI 10.1007/bf01214779 | MR 0394210 | Zbl 0298.46049
[14] Wang, X., Cao, P.: Spectral characterization of the kh-socle in Banach Jordan algebras. J. Math. Anal. Appl. 466 (2018), 567-572. DOI 10.1016/j.jmaa.2018.06.003 | MR 3818131 | Zbl 06897081
Partner of
EuDML logo