Previous |  Up |  Next

Article

Keywords:
oscillation; nonoscillation; impulsive difference equation; nonlinear neutral difference equation; delay
Summary:
We have established sufficient conditions for oscillation of a class of first order neutral impulsive difference equations with deviating arguments and fixed moments of impulsive effect.
References:
[1] Lakshmikantham, V., Bainov, D. D., Simieonov, P. S.: Oscillation Theory of Impulsive Differential Equations. Series in Modern Applied Mathematics 6. World Scientific, Singapore (1989). DOI 10.1142/0906 | MR 1082551 | Zbl 0719.34002
[2] Li, J., Shen, J.: Positive solutions for first order difference equations with impulses. Int. J. Difference Equ. 1 (2006), 225-239. MR 2340076 | Zbl 1142.39304
[3] Li, X., Xi, Q.: Oscillatory and asymptotic properties of impulsive difference equations with time-varying delays. Int. J. Difference Equ. 4 (2009), 201-209. MR 2597151
[4] Li, Q., Zhang, Z., Guo, F., Liu, Z., Liang, H.: Oscillatory criteria for third-order difference equation with impulses. J. Comput. Appl. Math. 225 (2009), 80-86. DOI 10.1016/j.cam.2008.07.002 | MR 2490172 | Zbl 1161.39007
[5] Lu, W., Ge, W., Zhao, Z.: Oscillatory criteria for third-order nonlinear difference equation with impulses. J. Comput. Appl. Math. 234 (2010), 3366-3372. DOI 10.1016/j.cam.2010.04.037 | MR 2665392 | Zbl 1206.39017
[6] Parhi, N., Tripathy, A. K.: Oscillation criteria for forced nonlinear neutral delay difference equations of first order. Differ. Equ. Dyn. Syst. 8 (2000), 81-97. MR 1858770 | Zbl 0978.39006
[7] Parhi, N., Tripathy, A. K.: On asymptotic behaviour and oscillation of forced first order nonlinear neutral difference equations. Fasc. Math. 32 (2001), 83-95. MR 1867949 | Zbl 0994.39011
[8] Parhi, N., Tripathy, A. K.: Oscillation of a class of neutral difference equations of first order. J. Difference Equ. Appl. 9 (2003), 933-946. DOI 10.1080/1023619031000047680 | MR 1996344 | Zbl 1135.39301
[9] Parhi, N., Tripathy, A. K.: Oscillation of forced nonlinear neutral delay difference equations of first order. Czech. Math. J. 53 (2003), 83-101. DOI 10.1023/A:1022975525370 | MR 1962001 | Zbl 1016.39011
[10] Peng, M.: Oscillation theorems for second-order nonlinear neutral delay difference equations with impulses. Comput. Math. Appl. 44 (2002), 741-748. DOI 10.1016/s0898-1221(02)00187-6 | MR 1925817 | Zbl 1035.39006
[11] Peng, M.: Oscillation criteria for second-order impulsive delay difference equations. Appl. Math. Comput. 146 (2003), 227-235. DOI 10.1016/s0096-3003(02)00539-8 | MR 2007781 | Zbl 1036.39015
[12] Tripathy, A. K.: Oscillation criteria for a class of first order neutral impulsive differential-difference equations. J. Appl. Anal. Comput. 4 (2014), 89-101. DOI 10.11948/2014003 | MR 3164912 | Zbl 1292.34066
[13] Wang, P., Wang, W.: Boundary value problems for first order impulsive difference equations. Int. J. Difference Equ. 1 (2006), 249-259. MR 2340078 | Zbl 1142.39314
[14] Wei, G. P.: The persistance of nonoscillatory solutions of difference equation under impulsive perturbations. Comput. Math. Appl. 50 (2005), 1579-1586. DOI 10.1016/j.camwa.2005.08.025 | MR 2185709 | Zbl 1088.39010
[15] Zhang, H., Chen, L.: Oscillation criteria for a class of second-order impulsive delay difference equations. Adv. Complex Syst. 9 (2006), 69-76. DOI 10.1142/s0219525906000677 | MR 2264168 | Zbl 1113.39014
Partner of
EuDML logo