Previous |  Up |  Next

Article

Keywords:
${\mathcal F}$-hypercyclic binary relation; ${\mathcal F}$-topologically transitive binary relation; disjoint ${\mathcal F}$-hypercyclic binary relation; disjoint ${\mathcal F}$-topologically transitive binary relation; digraph
Summary:
We examine various types of $\mathcal F$-hypercyclic ($\mathcal F$-topologically transitive) and disjoint $\mathcal F$-hypercyclic (disjoint $\mathcal F$-topologically transitive) properties of binary relations over topological spaces. We pay special attention to finite structures like simple graphs, digraphs and tournaments, providing a great number of illustrative examples.
References:
[1] Bayart, F., Grivaux, S.: Frequently hypercyclic operators. Trans. Am. Math. Soc. 358 (2006), 5083-5117. DOI 10.1090/S0002-9947-06-04019-0 | MR 2231886 | Zbl 1115.47005
[2] Bayart, F., Matheron, É.: Dynamics of Linear Operators. Cambridge Tracts in Mathematics 179. Cambridge University Press, Cambridge (2009). DOI 10.1017/CBO9780511581113 | MR 2533318 | Zbl 1187.47001
[3] Bès, J., Menet, Q., Peris, A., Puig, Y.: Strong transitivity properties for operators. Available at http://arxiv.org/pdf/arxiv:1703.03724 MR 3906215
[4] Bondy, J. A., Murty, U. S. R.: Graph Theory with Applications. American Elsevier Publishing, New York (1976). DOI 10.1007/978-1-349-03521-2 | MR 0411988 | Zbl 1226.05083
[5] Bonilla, A., Grosse-Erdmann, K.-G.: Frequently hypercyclic operators and vectors. Ergodic Theory Dyn. Syst. 27 (2007), 383-404 erratum ibid. 29 2009 1993-1994. DOI 10.1017/S014338570600085X | MR 2308137 | Zbl 1119.47011
[6] Bonilla, A., Grosse-Erdmann, K.-G.: Upper frequent hypercyclicity and related notions. Rev. Mat. Complut. 31 (2018), 673-711. DOI 10.1007/s13163-018-0260-y | MR 3847081 | Zbl 06946767
[7] Chartrand, G., Lesniak, L.: Graphs and Digraphs. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Brooks & Software. VIII, Monterey (1986). MR 0834583 | Zbl 0666.05001
[8] Chen, C.-C., Conejero, J. A., Kostić, M., Murillo-Arcila, M.: Dynamics of multivalued linear operators. Open Math. 15 (2017), 948-958. DOI 10.1515/math-2017-0082 | MR 3674105 | Zbl 06751707
[9] Chen, C.-C., Conejero, J. A., Kostić, M., Murillo-Arcila, M.: Dynamics on binary relations over topological spaces. Symmetry 10 (2018), 12 pages. DOI 10.3390/sym10060211
[10] Cvetković, D., Doobs, M., Sachs, H.: Spectra of Graphs: Theory and Applications. VEB Deutscher Verlag der Wissenschaften, Berlin (1980). MR 0572262 | Zbl 0458.05042
[11] Cvetković, D., Rowlinson, P., Simić, S.: Eigenspaces of Graphs. Encyclopedia of Mathematics and Its Applications 66. Cambrige University Press, Cambridge (1997). DOI 10.1017/CBO9781139086547 | MR 1440854 | Zbl 0878.05057
[12] Fürstenberg, H.: Recurrence in Ergodic Theory and Combinatorial Number Theory. M. B. Porter Lectures, Rice University, Department of Mathematics, 1978. Princeton University Press, Princeton (1981). MR 0603625 | Zbl 0459.28023
[13] Grosse-Erdmann, K.-G., Manguillot, A. Peris: Linear Chaos. Universitext. Springer, Berlin (2011). DOI 10.1007/978-1-4471-2170-1 | MR 2919812 | Zbl 1246.47004
[14] Kostić, M.: ${\mathcal F}$-hypercyclic linear operators on Fréchet spaces. DOI 10.13140/RG.2.2.26696.42245
[15] Kostić, M.: $\mathcal{F}$-hypercyclic extensions and disjoint ${\mathcal F}$-hypercyclic extensions of binary relations over topological spaces. Funct. Anal. Approx. Comput. 10 (2018), 41-52. MR 3804275 | Zbl 06902499
[16] Mart'ı{n}ez-Avendaño, R. A.: Hypercyclicity of shifts on weighted {$L^p$} spaces of directed trees. J. Math. Anal. Appl. 446 (2017), 823-842. DOI 10.1016/j.jmaa.2016.08.066 | MR 3554758 | Zbl 1346.05032
[17] Menet, Q.: Linear chaos and frequent hypercyclicity. Trans. Am. Math. Soc. 369 (2017), 4977-4994. DOI 10.1090/tran/6808 | MR 3632557 | Zbl 06705106
[18] Moon, J. W.: Topics on Tournaments. Holt, Rinehart and Winston, New York (1968). MR 0256919 | Zbl 0191.22701
[19] Moon, J. W., Pullman, N. J.: On the powers of tournament matrices. J. Comb. Theory 3 (1967), 1-9. DOI 10.1016/S0021-9800(67)80009-7 | MR 0213264 | Zbl 0166.00901
[20] Namayanja, P.: Chaotic dynamics in a transport equation on a network. Discrete Contin. Dyn. Syst., Ser. B 23 (2018), 3415-3426. DOI 10.3934/dcdsb.2018283 | MR 3848206 | Zbl 06996836
[21] Petrović, V.: Graph Theory. University of Novi Sad, Novi Sad (1998), Serbian.
Partner of
EuDML logo