[2] Chakraborty, K., Hoque, A.:
Class groups of imaginary quadratic fields of 3-rank at least 2. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 47 (2018), 179-183.
MR 3849201 |
Zbl 1424.11157
[4] Chakraborty, K., Hoque, A., Sharma, R.:
Divisibility of class numbers of quadratic fields: Qualitative aspects. Advances in Mathematical Inequalities and Applications Trends in Mathematics. Birkhäuser, Singapore (2018), 247-264.
DOI 10.1007/978-981-13-3013-1_12 |
MR 3969663 |
Zbl 1418.11144
[7] Hoque, A., Chakraborty, K.:
Divisibility of class numbers of certain families of quadratic fields. J. Ramanujan Math. Soc. 34 (2019), 281-289.
MR 4010381
[15] Murty, M. R.:
The $abc$ conjecture and exponents of class groups of quadratic fields. Number Theory. Proceedings of the International Conference on Discrete Mathematics and Number Theory Contemporary Mathematics 210. American Mathematical Society, Providence (1998), 85-95.
DOI 10.1090/conm/210 |
MR 1478486 |
Zbl 0893.11043
[17] Nagell, T.:
Über die Klassenzahl imaginär-quadratischer Zählkörper. Abh. Math. Semin. Univ. Hamb. 1 (1922), 140-150 German \99999JFM99999 48.0170.03.
DOI 10.1007/BF02940586 |
MR 3069394