Previous |  Up |  Next

Article

Keywords:
maximal non valuation domain; valuation subring; integrally closed subring
Summary:
Let $R$ be a commutative ring with unity. The notion of maximal non valuation domain in an integral domain is introduced and characterized. A proper subring $R$ of an integral domain $S$ is called a maximal non valuation domain in $S$ if $R$ is not a valuation subring of $S$, and for any ring $T$ such that $R \subset T\subset S$, $T$ is a valuation subring of $S$. For a local domain $S$, the equivalence of an integrally closed maximal non VD in $S$ and a maximal non local subring of $S$ is established. The relation between $\dim (R,S)$ and the number of rings between $R$ and $S$ is given when $R$ is a maximal non VD in $S$ and $\dim (R,S)$ is finite. For a maximal non VD $R$ in $S$ such that $R\subset R^{\prime _S} \subset S$ and $\dim (R,S)$ is finite, the equality of $\dim (R,S)$ and $\dim (R^{\prime _S},S)$ is established.
References:
[1] Akiba, T.: A note on AV-domains. Bull. Kyoto Univ. Educ., Ser. B 31 (1967), 1-3. MR 0218339 | Zbl 0265.13015
[2] Ayache, A.: Some finiteness chain conditions on the set of intermediate rings. J. Algebra 323 (2010), 3111-3123. DOI 10.1016/j.jalgebra.2010.03.009 | MR 2629702 | Zbl 1196.13007
[3] Ayache, A.: The set of indeterminate rings of a normal pair as a partially ordered set. Ric. Mat. 60 (2011), 193-201. DOI 10.1007/s11587-010-0102-9 | MR 2852336 | Zbl 1264.13012
[4] Ayache, A., Echi, O.: Valuation and pseudovaluation subrings of an integral domain. Commun. Algebra 34 (2006), 2467-2483. DOI 10.1080/00927870600650515 | MR 2240386 | Zbl 1105.13028
[5] Ayache, A., Jaballah, A.: Residually algebraic pairs of rings. Math. Z. 225 (1997), 49-65. DOI 10.1007/PL00004598 | MR 1451331 | Zbl 0868.13007
[6] Nasr, M. Ben, Jarboui, N.: Maximal non-Jaffard subrings of a field. Publ. Mat., Barc. 44 (2000), 157-175. DOI 10.5565/PUBLMAT_44100_05 | MR 1775744 | Zbl 0976.13007
[7] Nasr, M. Ben, Jarboui, N.: On maximal non-valuation subrings. Houston J. Math. 37 (2011), 47-59. MR 2786545 | Zbl 1222.13007
[8] Davis, E. D.: Overrings of commutative rings III: Normal pairs. Trans. Am. Math. Soc. 182 (1973), 175-185. DOI 10.1090/S0002-9947-1973-0325599-3 | MR 0325599 | Zbl 0272.13004
[9] Dechéne, L. I.: Adjacent Extensions of Rings: PhD Dissertation. University of California, Riverside (1978). MR 2627830
[10] Dobbs, D. E.: Divided rings and going-down. Pac. J. Math. 67 (1976), 353-363. DOI 10.2140/pjm.1976.67.353 | MR 0424795 | Zbl 0326.13002
[11] Dobbs, D. E., Fontana, M.: Universally incomparable ring-homomorphisms. Bull. Aust. Math. Soc. 29 (1984), 289-302. DOI 10.1017/S0004972700021547 | MR 0748722 | Zbl 0535.13006
[12] Dobbs, D. E., Picavet, G., Picavet-L'Hermitte, M.: Characterizing the ring extensions that satisfy FIP or FCP. J. Algebra 371 (2012), 391-429. DOI 10.1016/j.jalgebra.2012.07.055 | MR 2975403 | Zbl 1271.13022
[13] Fontana, M.: Topologically defined classes of commutative rings. Ann. Mat. Pura Appl., IV. Ser. 123 (1980), 331-355. DOI 10.1007/BF01796550 | MR 0581935 | Zbl 0443.13001
[14] Gilbert, M. S.: Extensions of Commutative Rings with Linearly Ordered Intermediate Rings: PhD Dissertation. University of Tennessee, Knoxville (1996). MR 2695057
[15] Gilmer, R.: Some finiteness conditions on the set of overrings of an integral domain. Proc. Am. Math. Soc. 131 (2003), 2337-2346. DOI 10.1090/S0002-9939-02-06816-8 | MR 1974630 | Zbl 1017.13009
[16] Hedstrom, J. R., Houston, E. G.: Pseudo-valuation domains. Pac. J. Math. 75 (1978), 137-147. DOI 10.2140/pjm.1978.75.137 | MR 0485811 | Zbl 0368.13002
[17] Jarboui, N., Trabelsi, S.: Some results about proper overrings of pseudo-valuation domains. J. Algebra Appl. 15 (2016), Article ID 1650099, 16 pages. DOI 10.1142/S0219498816500997 | MR 3479458 | Zbl 1343.13002
[18] Kumar, R., Gaur, A.: On $\lambda$-extensions of commutative rings. J. Algebra Appl. 17 (2018), Article ID 1850063, 9 pages. DOI 10.1142/S0219498818500639 | MR 3786742 | Zbl 1395.13006
[19] Mimouni, A., Samman, M.: Semistar-operations on valuation domains. Focus on Commutative Rings Research Nova Science Publishers, New York (2006), 131-141. MR 2387747 | Zbl 1155.13001
[20] Modica, M. L.: Maximal Subrings: PhD Dissertation. University of Chicago, Chicago (1975). MR 2611729
Partner of
EuDML logo