Previous |  Up |  Next

Article

Keywords:
Toeplitz operator; compression of slant Toeplitz operator; $n$-dimensional torus; Hardy space
Summary:
This paper studies the compression of a $k$th-order slant Toeplitz operator on the Hardy space $H^2(\mathbb {T}^n)$ for integers $k\ge 2$ and $n\ge 1$. It also provides a characterization of the compression of a $k$th-order slant Toeplitz operator on $H^2(\mathbb {T}^n)$. Finally, the paper highlights certain properties, namely isometry, eigenvalues, eigenvectors, spectrum and spectral radius of the compression of $k$th-order slant Toeplitz operator on the Hardy space $H^2(\mathbb {T}^n)$ of $n$-dimensional torus $\mathbb {T}^n$.
References:
[1] Arora, S. C., Batra, R.: On generalized slant Toeplitz operators. Indian J. Math. 45 (2003), 121-134. MR 2035900 | Zbl 1067.47038
[2] Arora, S. C., Batra, R.: Generalized slant Toeplitz operators on $H^2$. Math. Nachr. 278 (2005), 347-355. DOI 10.1002/mana.200310244 | MR 2121563 | Zbl 1087.47033
[3] Datt, G., Pandey, S. K.: Slant Toeplitz operators on Lebesgue space of $n$-dimensional torus. (to appear) in Hokkaido Math. J.
[4] Ding, X., Sun, S., Zheng, D.: Commuting Toeplitz operators on the bidisk. J. Funct. Anal. 263 (2012), 3333-3357. DOI 10.1016/j.jfa.2012.08.005 | MR 2984068 | Zbl 1284.47024
[5] Ho, M. C.: Spectra of slant Toeplitz operators with continuous symbol. Mich. Math. J. 44 (1997), 157-166. DOI 10.1307/mmj/1029005627 | MR 1439675 | Zbl 0907.47017
[6] Halmos, P. R.: Hilbert Space Problem Book. Graduate Texts in Mathematics 19. Springer, New York (1982). DOI 10.1007/978-1-4684-9330-6 | MR 0675952 | Zbl 0496.47001
[7] Ho, M. C.: Spectral Properties of Slant Toeplitz Operators: Ph.D. Thesis. Purdue-University, West Lafayette (1996). MR 2695217
[8] Lu, Y. F., Zhang, B.: Commuting Hankel and Toeplitz operators on the Hardy space of the bidisk. J. Math. Res. Expo. 30 (2010), 205-216. DOI 10.3770/j.issn:1000-341X.2010.02.002 | MR 2656608 | Zbl 1225.47031
[9] Maji, A., Sarkar, J., Sarkar, S.: Toeplitz and asymptotic Toeplitz operators on $H^2(\mathbb{D}^n)$. Bull. Sci. Math. 146 (2018), 33-49. DOI 10.1016/j.bulsci.2018.03.005 | MR 3812709 | Zbl 06893935
[10] Peller, V.: Hankel Operators and Their Applications. Springer Monographs in Mathematics. Springer, New York (2003). DOI 10.1007/978-0-387-21681-2 | MR 1949210 | Zbl 1030.47002
[11] Stein, E. M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series 32. Princeton University Press, Princeton (1971). DOI 10.1515/9781400883899 | MR 0304972 | Zbl 0232.42007
Partner of
EuDML logo