[1] Avin, C., Borokhovich, M., Haddad, Y., Kantor, E., Lotker, Z., Parter, M., Peleg, D.:
Generalized Perron-Frobenius theorem for multiple choice matrices, and applications. Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013 SIAM, Philadelphia (2013), 478-497.
DOI 10.1137/1.9781611973105.35 |
MR 3186769 |
Zbl 1422.90013
[2] Avin, C., Borokhovich, M., Haddad, Y., Kantor, E., Lotker, Z., Parter, M., Peleg, D.:
Generalized Perron-Frobenius theorem for nonsquare matrices. Available at
https://arxiv.org/abs/1308.5915 (2013), 55 pages.
MR 3186769
[14] Frobenius, G. F.: Über Matrizen aus positiven Elementen. Berl. Ber. 1908 (1908), 471-476 German \99999JFM99999 39.0213.03.
[15] Frobenius, G. F.: Über Matrizen aus positiven Elementen II. Berl. Ber. 1909 (1909), 514-518 German \99999JFM99999 40.0202.02.
[16] Frobenius, G. F.: Über Matrizen aus nicht negativen Elementen. Berl. Ber. 1912 (1912), 456-477 German \99999JFM99999 43.0204.09.
[17] Gantmacher, F. R.:
The Theory of Matrices. Vol. 1. Chelsea Publishing, New York (1959).
MR 0107649 |
Zbl 0927.15001
[18] Gantmacher, F. R.:
The Theory of Matrices. Vol. 2. Chelsea Publishing, New York (1959).
MR 0107649 |
Zbl 0927.15002
[19] Golub, G. H., Loan, C. F. Van:
Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (2013).
MR 3024913 |
Zbl 1268.65037
[21] Hastings, M. B.:
Superadditivity of communication capacity using entangled inputs. Nature Phys. 5 (2009), 255-257.
DOI 10.1038/nphys1224
[22] Holevo, A. S.:
The additivity problem in quantum information theory. Proceedings of the International Congress of Mathematicians (ICM). Vol. III European Mathematical Society, Zürich (2006), 999-1018.
DOI 10.4171/022-3/49 |
MR 2275716 |
Zbl 1100.94007
[26] Kreĭn, M. G., Rutman, M. A.:
Linear operators leaving invariant cone in a Banach space. Usp. Mat. Nauk 3 (1948), 3-95 Russian.
MR 0027128 |
Zbl 0030.12902
[31] Minc, H.:
Nonnegative Matrices. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1988).
MR 0932967 |
Zbl 0638.15008
[34] Pillai, S. U., Suel, T., Cha, S.:
The Perron-Frobenius theorem: Some of its applications. IEEE Signal Process. Magazine 22 (2005), 62-75.
DOI 10.1109/MSP.2005.1406483