[1] Cong, N. D., Doan, T. S., Siegmund, S., Tuan, H. T.:
Linearized asymptotic stability for fractional differential equations. Electron. J. Qual. Theory Differ. Equ. 39 (2016), 1–13.
DOI 10.14232/ejqtde.2016.1.39 |
MR 3513975
[2] Čermák, J., Nechvátal, L.:
The Routh–Hurwitz conditions of fractional type in stability analysis of the Lorenz dynamical system. Nonlinear Dynam. 87 (2017), 939–954.
DOI 10.1007/s11071-016-3090-9 |
MR 3594447
[3] Diethelm, K.:
The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type. Springer, Berlin, 2010.
MR 2680847
[4] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.:
Theory and applications of fractional differential equations. North-Holland Mathematics Studies 204. Elsevier, Amsterdam, 2006.
MR 2218073
[5] Kuczma, M., Choczewski, B., Ger, R.:
Iterative functional equations. Cambridge University Press, 1990.
MR 1067720
[6] Matignon, D.: Stability results for fractional differential equations with applications to control processing. Comput. Engrg. Systems Appl. (Lille) (1996), 963–968.
[7] Oldham, K., Spanier, J.:
The fractional calculus. Theory and applications of differentiation and integration to arbitrary order. Math. Sci. Eng. 111, Academic Press, New York–London, 1974.
MR 0361633
[8] Podlubný, I.:
Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Math. Sci. Eng. 198, Academic Press, San Diego, 1998.
MR 1658022
[9] Veselý, J.:
Poznámky k historii funkce gama. In: Bečvář, J., Fuchs, E. (eds.): Člověk – umění – matematika. Sborník přednášek z letních škol Historie matematiky, Dějiny matematiky 4. Prometheus, Praha, 1996, 49–71.
MR 1915568