Keywords: formal matrix ring; bimodule; system of factors; Wedderburn-Artin theorem
Summary: We investigate the formal matrix ring over $R$ defined by a certain system of factors. We give a method for constructing formal matrix rings from non-negative integer matrices. We also show that the principal factor matrix of a binary system of factors determine the structure of the system.
[1] Abyzov, A. N., Tapkin, D. T.: Formal matrix rings and their isomorphisms. Sib. Math. J. 56 (2015), 955-967 translated from Sib. Mat. Zh. 56 2015 1199-1214. DOI 10.1134/S0037446615060014 | MR 3492900 | Zbl 1338.16032
[2] Abyzov, A. N., Tapkin, D. T.: On certain classes of rings of formal matrices. Russ. Math. 59 (2015), 1-12 translated from Izv. Vyssh. Uchebn. Zaved., Mat. 2015 2015 3-14. DOI 10.3103/S1066369X15030019 | MR 3374336 | Zbl 1321.16018
[3] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). DOI 10.1017/CBO9780511623608 | MR 1314422 | Zbl 0834.16001
[8] Krylov, P. A., Tuganbaev, A. A.: Modules over formal matrix rings. J. Math. Sci., New York 171 (2010), 248-295 translated from Fundam. Prikl. Mat. 15 2009 145-211. DOI 10.1007/s10958-010-0133-5 | MR 2745016 | Zbl 1283.16025
[9] Krylov, P. A., Tuganbaev, A. A.: Formal matrices and their determinants. J. Math. Sci., New York 211 (2015), 341-380 translated from Fundam. Prikl. Mat. 19 2014 65-119. DOI 10.1007/s10958-015-2610-3 | MR 3431871 | Zbl 1333.15004
[11] Morita, K.: Duality for modules and its applications to the theory of rings with minimum conditions. Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A 6 (1958), 83-142. MR 0096700 | Zbl 0080.25702