Previous |  Up |  Next

Article

Keywords:
Hölder space; harmonic function; variable exponent space; modulus of continuity
Summary:
We study spaces of Hölder type functions harmonic in the unit ball and half space with some smoothness conditions up to the boundary. The first type is the Hölder type space of harmonic functions with prescribed modulus of continuity $\omega =\omega (h)$ and the second is the variable exponent harmonic Hölder space with the continuity modulus $|h|^{\lambda (\cdot )}$. We give a characterization of functions in these spaces in terms of the behavior of their derivatives near the boundary.
References:
[1] Arsenović, M., Kojić, V., Mateljević, M.: On Lipschitz continuity of harmonic quasiregular maps on the unit ball in $\mathbb R^n$. Ann. Acad. Sci. Fenn., Math. 33 (2008), 315-318. MR 2386855 | Zbl 1140.31003
[2] Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory. Graduate Texts in Mathematics 137, Springer, New York (2001). DOI 10.1007/b97238 | MR 1805196 | Zbl 0959.31001
[3] Blumenson, L. E.: A derivation of $n$-dimensional spherical coordinates. Am. Math. Mon. 67 (1960), 63-66. DOI 10.2307/2308932 | MR 1530579
[4] Chacón, G. R., Rafeiro, H.: Variable exponent Bergman spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 105 (2014), 41-49. DOI 10.1016/j.na.2014.04.001 | MR 3200739 | Zbl 1288.30059
[5] Chacón, G. R., Rafeiro, H.: Toeplitz operators on variable exponent Bergman spaces. Mediterr. J. Math. 13 (2016), 3525-3536. DOI 10.1007/s00009-016-0701-0 | MR 3554324 | Zbl 1354.30049
[6] Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Heidelberg (2013). DOI 10.1007/978-3-0348-0548-3 | MR 3026953 | Zbl 1268.46002
[7] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017, Springer, Berlin (2011). DOI 10.1007/978-3-642-18363-8 | MR 2790542 | Zbl 1222.46002
[8] Duren, P., Schuster, A.: Bergman Spaces. Mathematical Surveys and Monographs 100, American Mathematical Society, Providence (2004). DOI 10.1090/surv/100 | MR 2033762 | Zbl 1059.30001
[9] Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Graduate Texts in Mathematics 199, Springer, New York (2000). DOI 10.1007/978-1-4612-0497-8 | MR 1758653 | Zbl 0955.32003
[10] Karapetyants, A., Rafeiro, H., Samko, S.: Boundedness of the Bergman projection and some properties of Bergman type spaces. Complex Anal. Oper. Theory 13 (2019), 275-289. DOI 10.1007/s11785-018-0780-y | MR 3905593 | Zbl 1421.30070
[11] Karapetyants, A., Samko, S.: Spaces $ BMO_{p(\cdot)}(\Bbb D)$ of a variable exponent $p(z)$. Georgian Math. J. 17 (2010), 529-542. DOI 10.1515/gmj.2010.028 | MR 2719633 | Zbl 1201.30072
[12] Karapetyants, A., Samko, S.: Mixed norm Bergman-Morrey-type spaces on the unit disc. Math. Notes 100 (2016), 38-48. DOI 10.1134/S000143461607004X | MR 3588827 | Zbl 1364.30063
[13] Karapetyants, A., Samko, S.: Mixed norm variable exponent Bergman space on the unit disc. Complex Var. Elliptic Equ. 61 (2016), 1090-1106. DOI 10.1080/17476933.2016.1140750 | MR 3500518 | Zbl 1351.30042
[14] Karapetyants, A., Samko, S.: Mixed norm spaces of analytic functions as spaces of generalized fractional derivatives of functions in Hardy type spaces. Fract. Calc. Appl. Anal. 20 (2017), 1106-1130. DOI 10.1515/fca-2017-0059 | MR 3721891 | Zbl 1386.30052
[15] Karapetyants, A., Samko, S.: On boundedness of Bergman projection operators in Banach spaces of holomorphic functions in half-plane and harmonic functions in half-space. J. Math. Sci., New York 226 (2017), 344-354. DOI 10.1007/s10958-017-3538-6 | MR 3705149 | Zbl 1386.30051
[16] Karapetyants, A., Samko, S.: Generalized Hölder spaces of holomorphic functions in domains in the complex plane. Mediterr. J. Math. 15 (2018), Paper No. 226, 17 pages. DOI 10.1007/s00009-018-1272-z | MR 3878666 | Zbl 1411.30039
[17] Karapetyants, A., Samko, S.: On mixed norm Bergman-Orlicz-Morrey spaces. Georgian Math. J. 25 (2018), 271-282. DOI 10.1515/gmj-2018-0027 | MR 3808288 | Zbl 1392.30023
[18] Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-Standard Function Spaces. Volume 1. Variable Exponent Lebesgue and Amalgam Spaces. Operator Theory: Advances and Applications 248, Birkhäuser/Springer, Basel (2016). DOI 10.1007/978-3-319-21015-5 | MR 3559400 | Zbl 1385.47001
[19] Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-Standard Function Spaces. Volume 2. Variable Exponent Hölder, Morrey-Campanato and Grand Spaces. Operator Theory: Advances and Applications 249, Birkhäuser/Springer, Basel (2016). DOI 10.1007/978-3-319-21018-6 | MR 3559401 | Zbl 1367.47004
[20] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate texts in Mathematics 226, Springer, New York (2005). DOI 10.1007/0-387-27539-8 | MR 2115155 | Zbl 1067.32005
[21] Zhu, K.: Operator Theory in Function Spaces. Mathematical Surveys and Monographs 138, American Mathematical Society, Providence (2007). DOI 10.1090/surv/138 | MR 2311536 | Zbl 1123.47001
Partner of
EuDML logo