Previous |  Up |  Next

Article

Keywords:
coset; $G$-graph; rough set; group; normal subgroup; lower approximation; upper approximation
Summary:
$G$-graphs are a type of graphs associated to groups, which were proposed by A. Bretto and A. Faisant (2005). In this paper, we first give some theorems regarding $G$-graphs. Then we introduce the notion of rough $G$-graphs and investigate some important properties of these graphs.
References:
[1] Badaoui M., Bretto A., Ellison D., Mourad B.: On constructing expander families of $G$-graphs. Ars Math. Contemp. 15 (2018), no. 2, 425–440. DOI 10.26493/1855-3974.1537.97c | MR 3880000
[2] Bretto A., Faisant A.: Another way for associating a graph to a group. Math. Slovaca 55 (2005), no. 1, 1–8. MR 2178531
[3] Bretto A., Faisant A.: Cayley graphs and $G$-graphs: some applications. J. Symbolic Comput. 46 (2011), no. 12, 1403–1412. DOI 10.1016/j.jsc.2011.08.016 | MR 2861005
[4] Bretto A., Faisant A., Gillibert L.: $G$-graphs: a new representation of groups. J. Symbolic Comput. 42 (2007), no. 5, 549–560. DOI 10.1016/j.jsc.2006.08.002 | MR 2322473
[5] Bretto A., Gilibert L.: $G$-graphs for the cage problem: a new upper bound. International Symp. on Symbolic and Algebraic Computation, ISSAC 2007, ACM, New York, 2007, pages 49–53. MR 2396183
[6] Bretto A., Gillibert L.: $G$-graphs: an efficient tool for constructing symmetric and semisymmetric graphs. Discrete Appl. Math. 156 (2008), no. 14, 2719–2739. DOI 10.1016/j.dam.2007.11.011 | MR 2451092
[7] Bretto A., Jaulin C., Gillibert L., Laget B.: A new property of Hamming graphs and mesh of $d$-ary trees. 8th Asian Symposium, ASCM 2007, Singapore, 2007, Lecture Notes in Artificial Intelligence, Subseries Lecture Notes in Computer Science 5081, 2008, pages 139–150.
[8] Cayley A.: Desiderata and suggestions: No. 2. The theory of groups: graphical representations. Amer. J. Math. 1 (1878), no. 2, 174–176. DOI 10.2307/2369306 | MR 1505159
[9] Cayley A.: On the theory of groups. Amer. J. Math. 11 (1889), no. 2, 139–157. DOI 10.2307/2369415 | MR 1505501
[10] Cheng W., Mo Z.-W., Wang J.: Notes on: “The lower and upper approximations in a fuzzy group" and “Rough ideals in semigroups". Inform. Sci. 177 (2007), no. 22, 5134–5140. DOI 10.1016/j.ins.2006.12.006 | MR 2362816
[11] Kuroki N., Wang P. P.: The lower and upper approximations in a fuzzy group. Inform. Sci. 90 (1996), no. 1–4, 203–220. DOI 10.1016/0020-0255(95)00282-0 | MR 1388421
[12] Pawlak Z.: Rough sets. Internat. J. Comput. Inform. Sci. 11 (1982), no. 5, 341–356. DOI 10.1007/BF01001956 | MR 0703291
[13] Shahzamanian M. H., Shirmohammadi M., Davvaz B.: Roughness in Cayley graphs. Inform. Sci. 180 (2010), no. 17, 3362–3372. DOI 10.1016/j.ins.2010.05.011 | MR 2659052
[14] West D. B.: Introduction to Graph Theory. Prentice Hall, Upper Saddle River, 1996. MR 1367739 | Zbl 1121.05304
Partner of
EuDML logo