[2] Bretto A., Faisant A.:
Another way for associating a graph to a group. Math. Slovaca 55 (2005), no. 1, 1–8.
MR 2178531
[5] Bretto A., Gilibert L.:
$G$-graphs for the cage problem: a new upper bound. International Symp. on Symbolic and Algebraic Computation, ISSAC 2007, ACM, New York, 2007, pages 49–53.
MR 2396183
[6] Bretto A., Gillibert L.:
$G$-graphs: an efficient tool for constructing symmetric and semisymmetric graphs. Discrete Appl. Math. 156 (2008), no. 14, 2719–2739.
DOI 10.1016/j.dam.2007.11.011 |
MR 2451092
[7] Bretto A., Jaulin C., Gillibert L., Laget B.: A new property of Hamming graphs and mesh of $d$-ary trees. 8th Asian Symposium, ASCM 2007, Singapore, 2007, Lecture Notes in Artificial Intelligence, Subseries Lecture Notes in Computer Science 5081, 2008, pages 139–150.
[8] Cayley A.:
Desiderata and suggestions: No. 2. The theory of groups: graphical representations. Amer. J. Math. 1 (1878), no. 2, 174–176.
DOI 10.2307/2369306 |
MR 1505159
[10] Cheng W., Mo Z.-W., Wang J.:
Notes on: “The lower and upper approximations in a fuzzy group" and “Rough ideals in semigroups". Inform. Sci. 177 (2007), no. 22, 5134–5140.
DOI 10.1016/j.ins.2006.12.006 |
MR 2362816