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Roughness in G-graphs

Bibi N. Onagh

Abstract. G-graphs are a type of graphs associated to groups, which were pro-
posed by A. Bretto and A. Faisant (2005). In this paper, we first give some
theorems regarding G-graphs. Then we introduce the notion of rough G-graphs
and investigate some important properties of these graphs.
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1. Introduction

In [12] Z. Pawlak proposed rough set theory as an extension of set theory

in 1982. Also, N. Kuroki and P. P. Wang in [11] introduced the notion of rough

subgroups with respect to a normal subgroup of a group and investigated some

properties of the lower and the upper approximations in a group.

The Cayley graphs are the popular representations of groups by graphs, first

studied by A. Cayley in [8] and [9]. Another type of graphs associated to groups

are G-graphs. A. Bretto and A. Faisant introduced these graphs to study the

graph isomorphism problem [2]. For more information on the properties of G-

graphs, we refer to [1]–[7].

In [13], the notions of rough edge Cayley graphs, pseudo-Cayley graphs, rough

vertex pseudo-Cayley graphs and rough pseudo-Cayley graphs have been intro-

duced and their properties have been investigated.

In this paper, we first give some theorems regarding G-graphs. We then intro-

duce the notion of rough G-graphs and investigate their important properties.

2. Preliminaries

In the following, we first briefly review some definitions and terminologies re-

lated to groups, rough sets, and graphs. For rough set and graph-theoretic con-

cepts not defined here, we refer to [11] and [14], respectively. In this paper, all

groups and graphs are finite.
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2.1 Group definitions. Let G be a group and g ∈ G. Denote by o(G) and o(g)

the order of G and g, respectively. Let S be a nonempty subset of a group G such

that every g ∈ G can be written as form g = si1 . . . sik , where si1 , . . . , sik ∈ S.

Then we say that G is generated by S and write G = 〈S〉. Throughout this paper,

let D2n = 〈r, s : o(r) = n, o(s) = 2, srs = r−1〉 be the dihedral group of order

2n, n ≥ 2.

Let H be a subgroup of a group G. Then G can be partitioned in the disjoint

union of all the right cosets of H . A right transversal for H in G is a set TG
H =

{tα}α∈I ⊆ G such that for each right coset Hg, there is precisely one α ∈ I such

that Htα = Hg. If H = 〈t〉 then we use TG
t instead of TG

〈t〉.

2.2 The lower and upper approximations in a group. Let G be a group,

N be a normal subgroup of G and A be a nonempty subset of G. Then the sets

N−(A) := {x ∈ G : Nx ⊆ A} and N∧(A) := {x ∈ G : Nx ∩ A 6= ∅} are called

the lower and upper approximations of A with respect to N , respectively, and(
N−(A), N

∧(A)
)
is called the rough set of A in G.

Proposition 2.1 ([10], [11]). LetH andN be two normal subgroups of a group G.

Let A and B be two nonempty subsets of G. Then:

(i) N−(A) ⊆ A ⊆ N∧(A);

(ii) N−(A ∪B) ⊇ N−(A) ∪N−(B);

(iii) N∧(A ∪B) = N∧(A) ∪N∧(B);

(iv) N−(A ∩B) = N−(A) ∩N−(B);

(v) N∧(A ∩B) ⊆ N∧(A) ∩N∧(B);

(vi) A ⊆ B =⇒ N−(A) ⊆ N−(B);

(vii) A ⊆ B =⇒ N∧(A) ⊆ N∧(B);

(viii) N ⊆ H =⇒ N−(A) ⊇ H−(A);

(ix) N ⊆ H =⇒ N∧(A) ⊆ H∧(A).

The following proposition is a modified version of Propositions 2.4 and 2.5

in [11].

Proposition 2.2 ([10]). Let H and N be two normal subgroups of a group G.

Let A be a nonempty subset of G. Then:

(i) (H ∩N)−(A) ⊇ H−(A) ∪N−(A) ⊇ H−(A) ∩N−(A);

(ii) (H ∩N)∧(A) ⊆ H∧(A) ∩N∧(A) ⊆ H∧(A) ∪N∧(A).

2.3 Graph definitions. Let Γ = (VΓ, EΓ) be a graph. Denote by ‖Γ‖ the

number of edges in Γ. A graph Γ is called an empty graph if its edge set is empty.

A graph Γ′ is a subgraph of Γ (written Γ′ ⊆ Γ) if VΓ′ ⊆ VΓ and EΓ′ ⊆ EΓ. The

union Γ1 ∪ Γ2 of two graphs Γ1 and Γ2 is a graph with vertex set VΓ1
∪ VΓ2

and

edge set EΓ1
∪EΓ2

. The intersection Γ1 ∩Γ2 of Γ1 and Γ2 is defined analogously.
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Let r ≥ 2 be an integer. A graph Γ is called r-partite if VΓ can be partitioned

into r subsets, or parts, in such a way that no edge has both ends in the same

part.

Let S be a nonempty subset of a group G. For any s ∈ S, we have G =⋃
x∈Ts

〈s〉x, where Ts := TG
s is a right transversal for 〈s〉 in G. Consider the cycles

(s)x := (x, sx, s2x, . . . , so(s)−1x)

of the permutation gs : x 7−→ sx on G. The set 〈s〉x is called the support of the

cycle (s)x. A G-graph ϕ(G,S) is a graph with vertex set V :=
⋃

s∈S Vs, where

Vs = {(s)x : x ∈ Ts} are such that for each (s)x, (t)y ∈ V , if |〈s〉x ∩ 〈t〉y| := l ≥ 1

then the vertices (s)x and (t)y are linked by l edges. We consider ϕ(G, ∅) as null

graph (∅, ∅). One can see that for any s ∈ S and x ∈ Ts, the vertex (s)x has o(s)

loops. We denote by ϕ̃(G,S) the graph constructed by deleting all loops from

ϕ(G,S). The graph ϕ̃(G,S) is also called G-graph.

Hereafter, we just deal with G-graph ϕ̃(G,S).

Proposition 2.3 ([2], [3]). Let Γ := ϕ̃(G,S) be a G-graph. Then:

(i) Graph Γ is connected if and only if G = 〈S〉.

(ii) Graph Γ is a simple graph if and only if for all distinct s, t ∈ S,

〈s〉 ∩ 〈t〉 = 1G.

3. More facts on G-graphs

In this section, we give some basic facts regarding G-graphs.

Proposition 3.1. Let Γ := ϕ̃(G,S) be a G-graph. Then Γ is an r-partite graph,

where r ≤ |S|.

Proof: If there exist s, t ∈ S such that 〈s〉 = 〈t〉, then for every x ∈ G, 〈s〉x =

〈t〉x and so (s)x = (t)x. Moreover, Ts = Tt and then Vs = Vt. Set r := |{Vs :

s ∈ S}|. Obviously r ≤ |S|. One can easily see that Γ is r-partite. �

Example 3.2. Let G = Z6 and S = {1, 2, 3, 4, 5}. Obviously, V1 = V5 and

V2 = V4. So, the G-graph ϕ̃(G,S) is 3-partite (see Figure 1).

A modified version of Proposition 2 in [2] for G-graph ϕ̃(G,S) is as follows:

Proposition 3.3. Let Γ := ϕ̃(G,S) be a G-graph. Then, for every v ∈ Vs,

deg(v) = o(s)(r − 1) and ‖Γ‖ = (r(r − 1)/2)o(G), where r = |{Vs : s ∈ S}|.

Theorem 3.4. Let ϕ̃(G,S1) and ϕ̃(G,S2) be two G-graphs such that S1 ⊆ S2.

Then ϕ̃(G,S1) ⊆ ϕ̃(G,S2).



150 B.N. Onagh

s

s

ss

ss

(0, 1, 2, 3, 4, 5)

(0, 2, 4)

(1, 3, 5)

(0, 3)

(1, 4)

(2, 5)

Figure 1. ϕ̃(Z6, {1, 2, 3, 4, 5}).

Proof: Let S1 ⊆ S2. Then

Vϕ̃(G,S1) =
⋃

s∈S1

Vs ⊆

( ⋃

s∈S1

Vs

)
∪

( ⋃

s∈S2−S1

Vs

)
= Vϕ̃(G,S2).

Thus Vϕ̃(G,S1) ⊆ Vϕ̃(G,S2).

Now, suppose that there exist p ≥ 1 edges between two distinct vertices (s)x

and (t)y in ϕ̃(G,S1). Since (s)x ∈ Vs and (t)y ∈ Vt, there are p edges between

every vertex in Vs and every vertex in Vt. This implies that |〈s〉 ∩ 〈t〉| = p.

Hence there exist p edges between (s)x and (t)y in ϕ̃(G,S2). So ϕ̃(G,S1) ⊆

ϕ̃(G,S2). �

Remark 3.5. The converse of Theorem 3.4 is not necessarily true. For example,

ϕ̃(Z6, {1, 2, 3}) ⊆ ϕ̃(Z6, {3, 4, 5}) but {1, 2, 3} * {3, 4, 5}.

Corollary 3.6. Let Γ1 := ϕ̃(G,S1) and Γ2 := ϕ̃(G,S2) be two G-graphs. Then:

(i) Γ1 ∪ Γ2 ⊆ ϕ̃(G,S1 ∪ S2);

(ii) Γ1 ∩ Γ2 ⊇ ϕ̃(G,S1 ∩ S2).

Proof: (i) Since S1, S2 ⊆ S1 ∪ S2, by Theorem 3.4, we have Γ1,Γ2 ⊆

ϕ̃(G,S1 ∪ S2). Therefore Γ1 ∪ Γ2 ⊆ ϕ̃(G,S1 ∪ S2).

(ii) Similarly, since S1 ∩ S2 ⊆ S1, S2, it follows that ϕ̃(G,S1 ∩ S2) ⊆ Γ1,Γ2. So

ϕ̃(G,S1 ∩ S2) ⊆ Γ1 ∩ Γ2. �

Remark 3.7. The converse of Corollary 3.6 is not necessarily true. For example:

(i) Let Γ1 := ϕ̃(Z6, {1}) and Γ2 := ϕ̃(Z6, {4}). Then Γ1∪Γ2 + ϕ̃(Z6, {1, 4}).

(ii) Let Γ1 := ϕ̃(Z6, {1, 4}) and Γ2 := ϕ̃(Z6, {2, 4, 5}). Then Γ1 ∩ Γ2 *
ϕ̃(Z6, {4}).

Theorem 3.8. Let ϕ̃(G1, S) and ϕ̃(G2, S) be two G-graphs. Then ϕ̃(G1, S) ⊆

ϕ̃(G2, S) if and only if G1 ⊆ G2.



Roughness in G-graphs 151

Proof: Let G1 ⊆ G2 and (s)x ∈ Vϕ̃(G1,S). Then s ∈ S and x ∈ G1. Suppose

that (s)x /∈ Vϕ̃(G2,S). Since x ∈ G2 =
⋃

y∈T
G2
s

〈s〉y, there exists y ∈ TG2

s such

that x ∈ 〈s〉y. On the other hand, x ∈ 〈s〉x. Hence 〈s〉x = 〈s〉y. So (s)x = (s)y,

a contradiction. Therefore (s)x ∈ Vϕ̃(G2,S) and then Vϕ̃(G1,S) ⊆ Vϕ̃(G2,S). By

similar argument as in the proof of Theorem 3.4, one can show that Eϕ̃(G1,S) ⊆

Eϕ̃(G2,S). Thus ϕ̃(G1, S) ⊆ ϕ̃(G2, S).

Conversely, let ϕ̃(G1, S) ⊆ ϕ̃(G2, S) and g ∈ G1. Let s be an arbitrary fixed

element of S. Since g ∈ G1 =
⋃

x∈T
G1
s

〈s〉x, there exists x ∈ TG1

s such that

g ∈ 〈s〉x. Note that (s)x ∈ Vϕ̃(G1,S). Hence (s)x ∈ Vϕ̃(G2,S). Therefore 〈s〉x ⊆ G2

and then g ∈ G2. Thus G1 ⊆ G2. �

Theorem 3.9. Let Γ1 := ϕ̃(H1, S1) and Γ2 := ϕ̃(H2, S2) be twoG-graphs, where

H1 and H2 are two subgroups of a group G. Then Γ1 ∩Γ2 ⊇ ϕ̃(H1 ∩H2, S1 ∩S2).

Proof: Since H1 ∩H2 ⊆ H1, H2, by Theorem 3.8, it follows that

ϕ̃(H1 ∩H2, S1 ∩ S2) ⊆ ϕ̃(H1, S1 ∩ S2), ϕ̃(H2, S1 ∩ S2).

Now, since S1 ∩ S2 ⊆ S1, S2, by Theorem 3.4, we have ϕ̃(H1, S1 ∩ S2) ⊆ Γ1 and

ϕ̃(H2, S1 ∩ S2) ⊆ Γ2, respectively. Therefore ϕ̃(H1 ∩ H2, S1 ∩ S2) ⊆ Γ1,Γ2 and

then ϕ̃(H1 ∩H2, S1 ∩ S2) ⊆ Γ1 ∩ Γ2. �

Remark 3.10. The converse of Theorem 3.9 is not necessarily true. For example,

if Γ1 := ϕ̃(Z6, {1, 4}) and Γ2 := ϕ̃(Z6, {2, 4, 5}) then Γ1 ∩ Γ2 * ϕ̃(Z6, {4}).

4. Rough G-graphs

In this section, the notions of the lower and upper approximations of a G-

graph with respect to a normal subgroup are introduced and their properties are

investigated.

Definition 4.1. Let G be a group, N be a normal subgroup of G and Γ :=

ϕ̃(G,S) be a G-graph. Then the graphs Γ := ϕ̃
(
G,N−(S)

)
and Γ := ϕ̃

(
G,N∧(S)

)

are called the lower and upper approximations of Γ with respect toN , respectively

and (Γ,Γ) is called the rough G-graph of Γ with respect to N .

Example 4.2. Let G = Z8, S = {1, 2, 3, 5, 7}, N = {0, 2, 4, 6} and Γ := ϕ̃(G,S).

Note that N−(S) = {1, 3, 5, 7} and N∧(S) = {0, 1, 2, 3, 4, 5, 6, 7}. Then Γ =

ϕ̃(Z8, {1, 3, 5, 7}) and Γ = ϕ̃(Z8, {0, 1, 2, 3, 4, 5, 6, 7}) (see Figure 2).

Theorem 4.3. Let N be a normal subgroup of a group G and Γ := ϕ̃(G,S) be

a G-graph. Then Γ ⊆ Γ ⊆ Γ.
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Figure 2. Rough G-graph ϕ̃(Z8, {1, 2, 3, 5, 7}) with respect to
N = {0, 2, 4, 6}.

Proof: By Proposition 2.1 (i), we haveN−(S) ⊆ S ⊆ N∧(S). Now, Theorem 3.4

implies that Γ ⊆ Γ ⊆ Γ. �

Theorem 4.4. Let N be a normal subgroup of a group G. Let ϕ̃(G,S1) and

ϕ̃(G,S2) be two G-graphs. Then:

(i) ϕ̃(G,N−

(
S1 ∪ S2)

)
⊇ ϕ̃

(
G,N−(S1)

)
∪ ϕ̃

(
G,N−(S2)

)
;

(ii) ϕ̃
(
G,N∧(S1 ∪ S2)

)
⊇ ϕ̃

(
G,N∧(S1)

)
∪ ϕ̃

(
G,N∧(S2)

)
;

(iii) ϕ̃
(
G,N−(S1 ∩ S2)

)
⊆ ϕ̃

(
G,N−(S1)

)
∩ ϕ̃

(
G,N−(S2)

)
;

(iv) ϕ̃
(
G,N∧(S1 ∩ S2)

)
⊆ ϕ̃

(
G,N∧(S1)

)
∩ ϕ̃

(
G,N∧(S2)

)
.

Proof: (i) By Proposition 2.1 (ii), N−(S1∪S2) ⊇ N−(S1)∪N−(S2). On the other

hand, N−(S1) ∪N−(S2) ⊇ N−(S1), N−(S2). So N−(S1 ∪ S2) ⊇ N−(S1), N−(S2).

Now, by Theorem 3.4, it follows that ϕ̃
(
G,N−(S1 ∪ S2)

)
⊇ ϕ̃

(
G,N−(S1)

)
,

ϕ̃
(
G,N−(S2)

)
. Therefore ϕ̃

(
G,N−(S1 ∪ S2)

)
⊇ ϕ̃

(
G,N−(S1)

)
∪ ϕ̃

(
G,N−(S2)

)
.

(ii) By Proposition 2.1 (iii) , N∧(S1 ∪ S2) = N∧(S1) ∪ N∧(S2). Now, Corol-

lary 3.6 (i) implies that ϕ̃
(
G,N∧(S1 ∪ S2)

)
⊇ ϕ̃

(
G,N∧(S1)

)
∪ ϕ̃

(
G,N∧(S2)

)
.

(iii) By Proposition 2.1 (iv), N−(S1 ∩ S2) = N−(S1) ∩ N−(S2). Now, Corol-

lary 3.6 (ii) yields ϕ̃
(
G,N−(S1 ∩ S2)

)
⊆ ϕ̃

(
G,N−(S1)

)
∩ ϕ̃

(
G,N−(S2)

)
.

(iv) By Proposition 2.1 (v), N∧(S1 ∩ S2) ⊆ N∧(S1) ∩ N∧(S2). On the other

hand, N∧(S1) ∩ N∧(S2) ⊆ N∧(S1), N∧(S2). Then N∧(S1 ∩ S2) ⊆ N∧(S1),
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N∧(S2). Now, by using Theorem 3.4, we have ϕ̃
(
G,N∧(S1∩S2)

)
⊆ ϕ̃

(
G,N∧(S1)

)
,

ϕ̃
(
G,N∧(S2)

)
. Therefore ϕ̃

(
G,N∧(S1 ∩ S2)

)
⊆ ϕ̃

(
G,N∧(S1)

)
∩ ϕ̃

(
G,N∧(S2)

)
.

�

Remark 4.5. The converse of Theorem 4.4 is not necessarily true. For example:

(i) Let G = D6, S1 = {s, r2s}, S2 = {s, rs}, N = {1, r, r2}, Γ1 := ϕ̃(G,S1)

and Γ2 := ϕ̃(G,S2). Note that N−(S1) = N−(S2) = ∅ and N−(S1∪S2) =

{s, rs, r2s}. Then ϕ̃
(
G,N−(S1 ∪ S2)

)
* ϕ̃

(
G,N−(S1)

)
∪ ϕ̃

(
G,N−(S2)

)
.

(ii) Let G = D8, S1 = {r, s}, S2 = {r2, s}, N = {1, r2}, Γ1 := ϕ̃(G,S1)

and Γ2 := ϕ̃(G,S2). Note that N∧(S1) = {r, r3, s, r2s}, N∧(S2) =

{1, r2, s, r2s} and N∧(S1 ∪S2) = {1, r, r2, r3, s, r2s}. Then ϕ̃
(
G,N∧(S1 ∪

S2)
)
* ϕ̃

(
G,N∧(S1)

)
∪ ϕ̃

(
G,N∧(S2)

)
.

(iii) Let G = Z6, S1 = {1, 4}, S2 = {2, 4, 5}, N = {0}, Γ1 := ϕ̃(G,S1)

and Γ2 := ϕ̃(G,S2). Note that N−(S1) = {1, 4}, N−(S2) = {2, 4, 5}

and N−(S1 ∩ S2) = {4}. Then ϕ̃
(
G,N−(S1 ∩ S2)

)
+ ϕ̃

(
G,N−(S1)

)
∩

ϕ̃
(
G,N−(S2)

)
.

(iv) Let G = D6, S1 = {r, s}, S2 = {r, rs}, N = {1, r, r2}, Γ1 := ϕ̃(G,S1) and

Γ2 := ϕ̃(G,S2). Note that N∧(S1) = N∧(S2) = D6 and N∧(S1 ∩ S2) =

{1, r, r2}. Then ϕ̃
(
G,N∧(S1 ∩ S2)

)
+ ϕ̃

(
G,N∧(S1)

)
∩ ϕ̃

(
G,N∧(S2)

)
.

Theorem 4.6. Let N and H be two normal subgroups of a group G such that

N ⊆ H . Let Γ := ϕ̃(G,S) be a G-graph. Then:

(i) ϕ̃
(
G,N−(S)

)
⊇ ϕ̃

(
G,H−(S)

)
;

(ii) ϕ̃
(
G,N∧(S)

)
⊆ ϕ̃

(
G,H∧(S)

)
.

Proof: (i) By Proposition 2.1 (viii), N−(S) ⊇ H−(S). So, Theorem 3.4 yields

ϕ̃
(
G,N−(S)

)
⊇ ϕ̃

(
G,H−(S)

)
.

(ii) By Proposition 2.1 (ix) and Theorem 3.4, the proof is similar to (i). �

Theorem 4.7. Let N and H be two normal subgroups of a group G. Let Γ :=

ϕ̃(G,S) be a G-graph. Then:

(i) ϕ̃
(
G, (H ∩ N)−(S)

)
⊇ ϕ̃

(
G,H−(S)

)
∪ ϕ̃

(
G,N−(S)

)
⊇ ϕ̃

(
G,H−(S)

)
∩

ϕ̃
(
G,N−(S)

)
;

(ii) ϕ̃
(
G, (H ∩ N)∧(S)

)
⊆ ϕ̃

(
G,H∧(S)

)
∩ ϕ̃

(
G,N∧(S)

)
⊆ ϕ̃

(
G,H∧(S)

)
∪

ϕ̃
(
G,N∧(S)

)
.

Proof: (i) By Proposition 2.2 (i), (H ∩N)−(S) ⊇ H−(S) ∪N−(S). Now, The-

orem 3.4 implies that ϕ̃
(
G, (H ∩ N)−(S)

)
⊇ ϕ̃

(
G,H−(S) ∪ N−(S)

)
. On the

other hand, by Corollary 3.6 (i), we have ϕ̃
(
G,H−(S)∪N−(S)

)
⊇ ϕ̃

(
G,H−(S)

)
∪

ϕ̃
(
G,N−(S)

)
. Obviously ϕ̃

(
G,H−(S)

)
∪ ϕ̃

(
G,N−(S)

)
⊇ ϕ̃

(
G,H−(S)

)
∩

ϕ̃
(
G,N−(S)

)
. Therefore ϕ̃

(
G, (H ∩ N)−(S)

)
⊇ ϕ̃

(
G,H−(S)

)
∪ ϕ̃

(
G,N−(S)

)
⊇

ϕ̃
(
G,H−(S)

)
∩ ϕ̃

(
G,N−(S)

)
.
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(ii) By Proposition 2.2 (ii) , (H∩N)∧(S) ⊆ H∧(S)∩N∧(S). Now, Theorem 3.4

implies that ϕ̃
(
G,H ∩N)∧(S)

)
⊆ ϕ̃

(
G,H∧(S) ∩N∧(S)

)
. On the other hand, by

Corollary 3.6 (ii), we have ϕ̃
(
G,H∧(S)∩N∧(S)

)
⊆ ϕ̃

(
G,H∧(S)

)
∩ ϕ̃

(
G,N∧(S)

)
.

Obviously ϕ̃
(
G,H∧(S)

)
∩ ϕ̃

(
G,N∧(S)

)
⊆ ϕ̃

(
G,H∧(S)

)
∪ ϕ̃

(
G,N∧(S)

)
. There-

fore ϕ̃
(
G, (H ∩ N)∧(S)

)
⊆ ϕ̃

(
G,H∧(S)

)
∩ ϕ̃

(
G,N∧(S)

)
⊆ ϕ̃

(
G,H∧(S)

)
∪

ϕ̃
(
G,N∧(S)

)
. �
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