Previous |  Up |  Next

Article

Keywords:
Henstock-Kurzweil integral; Schrödinger operator; ${\rm ACG}_{*}$-function; bounded variation function
Summary:
In the present paper, we investigate the existence of solutions to boundary value problems for the one-dimensional Schrödinger equation $-y''+qy=f$, where $q$ and $f$ are Henstock-Kurzweil integrable functions on $[a,b]$. Results presented in this article are generalizations of the classical results for the Lebesgue integral.
References:
[1] Bartle, R. G.: A Modern Theory of Integration. Graduate Studies in Mathematics 32, AMS, Providence (2001). DOI 10.1090/gsm/032 | MR 1817647 | Zbl 0968.26001
[2] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2011). DOI 10.1007/978-0-387-70914-7 | MR 2759829 | Zbl 1220.46002
[3] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics 4, AMS, Providence (1994). DOI 10.1090/gsm/004 | MR 1288751 | Zbl 0807.26004
[4] Peral, I.: Primer Curso de Ecuaciones en Derivadas Parciales. Addison Wesley, Boston (1995), Spanish.
[5] Sánchez-Perales, S.: The initial value problem for the Schrödinger equation involving the Henstock-Kurzweil integral. Rev. Unión Mat. Argent. 58 (2017), 297-306. MR 3733209 | Zbl 1382.34096
[6] Swartz, C.: Norm convergence and uniform integrability for the Henstock-Kurzweil integral. Real Anal. Exch. 24 (1998), 423-426. DOI 10.2307/44152964 | MR 1691761 | Zbl 0943.26022
[7] Talvila, E.: Henstock-Kurzweil Fourier transforms. Ill. J. Math. 46 (2002), 1207-1226. DOI 10.1215/ijm/1258138475 | MR 1988259 | Zbl 1037.42007
Partner of
EuDML logo