Article
Keywords:
Henstock-Kurzweil integral; Schrödinger operator; ${\rm ACG}_{*}$-function; bounded variation function
Summary:
In the present paper, we investigate the existence of solutions to boundary value problems for the one-dimensional Schrödinger equation $-y''+qy=f$, where $q$ and $f$ are Henstock-Kurzweil integrable functions on $[a,b]$. Results presented in this article are generalizations of the classical results for the Lebesgue integral.
References:
[4] Peral, I.: Primer Curso de Ecuaciones en Derivadas Parciales. Addison Wesley, Boston (1995), Spanish.
[5] Sánchez-Perales, S.:
The initial value problem for the Schrödinger equation involving the Henstock-Kurzweil integral. Rev. Unión Mat. Argent. 58 (2017), 297-306.
MR 3733209 |
Zbl 1382.34096