Previous |  Up |  Next

Article

Keywords:
Hadamard manifold; Neumann eigenvalue; radial Ricci curvature
Summary:
Let $M$ be an $n$-dimensional ($n\ge 2$) simply connected Hadamard manifold. If the radial Ricci curvature of $M$ is bounded from below by $(n-1)k(t)$ with respect to some point $p\in M$, where $t=d(\cdot ,p)$ is the Riemannian distance on $M$ to $p$, $k(t)$ is a nonpositive continuous function on $(0,\infty )$, then the first $n$ nonzero Neumann eigenvalues of the Laplacian on the geodesic ball $B(p,l)$, with center $p$ and radius $0<l<\infty $, satisfy $$ \frac {1}{\mu _1}+\frac {1}{\mu _2}+\cdots +\frac {1}{\mu _n}\ge \frac {l^{n+2}}{(n+2)\int _{0}^{l}f^{n-1}(t){\rm d}t}, $$ where $f(t)$ is the solution to $$ \begin {cases} f''(t)+k(t)f(t)=0 \quad \text {on} \ (0,\infty ),\\ f(0)=0, \ f'(0)=1. \end {cases} $$
References:
[1] Ashbaugh, M. S., Benguria, R. D.: Universal bounds for the low eigenvalues of Neumann Laplacians in $n$ dimensions. SIAM J. Math. Anal. 24 (1993), 557-570. DOI 10.1137/0524034 | MR 1215424 | Zbl 0796.35122
[2] Ashbaugh, M. S., Benguria, R. D., Laugesen, R. S., Weidl, T.: Low eigenvalues of Laplace and Schrödinger operators. Oberwolfach Rep. 6 (2009), 355-428. DOI 10.4171/OWR/2009/06 | MR 2604061 | Zbl 1177.35003
[3] Bandle, C.: Isoperimetric inequality for some eigenvalues of an inhomogeneous, free membrane. SIAM J. Appl. Math. 22 (1972), 142-147. DOI 10.1137/0122016 | MR 0313648 | Zbl 0237.35069
[4] Bandle, C.: Isoperimetric Inequalities and Applications. Monographs and Studies in Mathematics 7, Pitman, Boston (1980). MR 0572958 | Zbl 0436.35063
[5] Brouwer, L. E. J.: Über Abbildung von Mannigfaltigkeiten. Math. Ann. 71 (1911), 97-115 German \99999JFM99999 42.0417.01. DOI 10.1007/BF01456931 | MR 1511644
[6] Chavel, I.: Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics 115, Academic Press, Orlando (1984). DOI 10.1016/S0079-8169(13)62888-3 | MR 0768584 | Zbl 0551.53001
[7] Enache, C., Philippin, G. A.: Some inequalities involving eigenvalues of the Neumann Laplacian. Math. Methods Appl. Sci. 36 (2013), 2145-2153. DOI 10.1002/mma.2743 | MR 3124783 | Zbl 1276.35121
[8] Freitas, P., Mao, J., Salavessa, I.: Spherical symmetrization and the first eigenvalue of geodesic disks on manifolds. Calc. Var. Partial Differ. Equ. 51 (2014), 701-724. DOI 10.1007/s00526-013-0692-7 | MR 3268868 | Zbl 1302.35275
[9] Girouard, A., Nadirashvili, N., Polterovich, I.: Maximization of the second positive Neumann eigenvalue for planar domains. J. Differ. Geom. 83 (2009), 637-662. DOI 10.4310/jdg/1264601037 | MR 2581359 | Zbl 1186.35120
[10] Mao, J.: Eigenvalue inequalities for the $p$-Laplacian on a Riemannian manifold and estimates for the heat kernel. J. Math. Pures Appl. 101 (2014), 372-393. DOI 10.1016/j.matpur.2013.06.006 | MR 3168915 | Zbl 1285.58013
[11] Spanier, E. H.: Algebraic Topology. McGraw-Hill Series in Higher Mathematics, \hbox{McGraw}-Hill, New York (1966). DOI 10.1007/978-1-4684-9322-1 | MR 0210112 | Zbl 0145.43303
[12] Szegö, G.: Inequalities for certain eigenvalues of a membrane of given area. J. Ration. Mech. Anal. 3 (1954), 343-356. DOI 10.1512/iumj.1954.3.53017 | MR 0061749 | Zbl 0055.08802
[13] Weinberger, H. F.: An isoperimetric inequality for the $n$-dimensional free membrane problem. J. Ration. Mech. Anal. 5 (1956), 633-636. DOI 10.1512/iumj.1956.5.55021 | MR 0079286 | Zbl 0071.09902
[14] Xia, C.: A universal bound for the low eigenvalues of Neumann Laplacians on compact domains in a Hadamard manifold. Monatsh. Math. 128 (1999), 165-171. DOI 10.1007/s006050050054 | MR 1712488 | Zbl 0941.58021
Partner of
EuDML logo