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Abstract. Let M be an n-dimensional (n > 2) simply connected Hadamard manifold.
If the radial Ricci curvature of M is bounded from below by (n − 1)k(t) with respect
to some point p ∈ M , where t = d(·, p) is the Riemannian distance on M to p, k(t) is
a nonpositive continuous function on (0,∞), then the first n nonzero Neumann eigenvalues
of the Laplacian on the geodesic ball B(p, l), with center p and radius 0 < l < ∞, satisfy

1
µ1
+
1
µ2
+ . . .+

1
µn

>
ln+2

(n+ 2)
∫ l
0
fn−1(t)dt

,

where f(t) is the solution to
{

f ′′(t) + k(t)f(t) = 0 on (0,∞),

f(0) = 0, f ′(0) = 1.
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1. Introduction

Let Ω be a bounded domain in an n-dimensional (n > 2) complete Riemannian

manifoldM . Denote by ∇ the gradient and by ∆ the Laplacian onM . The so-called
Neumann eigenvalue problem of the Laplacian is to find all possible real numbers µ

such that

(♯)






∆u+ µu = 0 in Ω,

∂u

∂~n
= 0 on ∂Ω
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has a nontrivial solution u, where ~n denotes the outward unit normal vector of the

boundary ∂Ω. It is well-known that for the boundary value problem (♯), −∆ has

only discrete spectrum. Elements in the spectrum are called eigenvalues and all the

eigenvalues µi, i = 0, 1, 2, . . . , can be listed increasingly as follows

0 = µ0 < µ1 6 µ2 6 µ3 6 . . . 6 µn 6 . . . ↑ +∞.

For a fixed Neumann eigenvalue µi, the space of solutions u to (♯) is called the

eigenspace of µi. Each eigenspace has finite dimension and we refer to the dimension

of each eigenspace as to the multiplicity of the eigenvalue. Each eigenvalue in the

above increasing sequence repeats according to its multiplicity.

For the first n nonzero Neumann eigenvalues of (♯), there exist some interest-

ing estimates. For instance, if M = R2, the 2-dimensional Euclidean space, and

furthermore Ω ⊂ R2 is simply connected, Szegö in [12] proved the estimate

(1.1) µ1 6
πF 2

1,1

|Ω|
∼= 10.65

|Ω|

with equality if and only if Ω is a disk. His proof relies on the method of conformal

transplantation and only works for simply connected domains. Weinberger in [13]

extended Szegö’s estimate (1.1) to arbitrary bounded domains in Rn (n > 2). In

fact, he proved that

(1.2) µ1 6

(Cn

|Ω|
)2/n

F 2
n/2,1

with equality if and only if Ω is a ball, where |Ω| is the volume of Ω, Cn is the volume

of the unit ball in R
n, Fv,k is the kth positive zero of the derivative of x

1−vJv(x)

with Jv(x) the Bessel function. Besides, Szegö and Weinberger found that Szegö’s

proof for the estimate (1.1) can be used to get the bound

(1.3)
1

µ1
+

1

µ2
>

2|Ω|
πF 2

1,1

∼= |Ω|
5.325

for simply connected domains in R2. Bandle in [3], [4] showed that among all simply

connected surfaces of given area A and of Gaussian curvature K0 with AK0 6 2π,

the disk of area A on a complete simply connected surface of constant Gaussian

curvature K0 minimizes 1/µ1 +1/µ2, which improved the estimate (1.3). Ashbaugh

and Benguria in [1] proved that for arbitrary domains in R2, the lower bound estimate

(1.4)
1

µ1
+

1

µ2
>

|Ω|
2π
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holds. They also extended (1.4) to arbitrary domains in Rn as follows:

(1.5)
1

µ1
+

1

µ2
+ . . .+

1

µn
>

n

n+ 2

( |Ω|
Cn

)2/n
.

If Ω ⊂ R2 is a simply connected bounded domain, for the problem (♯), Girouard,

Nadirashvili, and Polterovich in [9] gave a sharp upper bound for µ2 as follows:

(1.6) µ2 6
2πµ1(D)

|Ω| =
2πF 2

1,1

|Ω|
∼= 21.3

|Ω| ,

where µ1(D) stands for the first nonzero Neumann eigenvalue of the Laplacian on

the unit disk in R
2. Besides, the equality in (1.6) can be obtained for the disjoint

union of two identical disks. Polterovich also suggested that the inequality (1.1) can

be strengthened in the following sense (see [2], Problem (2), page 405 for details):

(1.7) µ1µ2 6
π
2µ2

1(D)

|Ω|2 =
π
2F 4

1,1

|Ω|2
∼= 113.42

|Ω|2 .

If furthermore the simply connected domain Ω ⊂ R
2 has some symmetry, addi-

tional results on µ1(Ω), µ2(Ω) can be expected. For instance, by Ashbaugh-Benguria

(see [1]), one has:

⊲ if Ω ⊂ R2 has k-fold (k > 3) rotational symmetry, then for the problem (♯),

µ1 = µ2;

⊲ if Ω ⊂ R2 has 4-fold rotational symmetry, then for the problem (♯), µk 6 µk(Ω
∗),

k = 1, 2, where Ω∗ is the disk of the same area as Ω, and µk(Ω
∗) stands for the

kth nonzero Neumann eigenvalue of the Laplacian on Ω∗.

Furthermore, by Enache-Philippin (see [7]), if Ω ⊂ R2 has 2-fold rotational sym-

metry, then for the problem (♯), one has

⊲ r20(µ1 + µ2) 6 2µ1(D) = 2F 2
1,1

∼= 6.78,

⊲ r20 |Ω|µ1µ2 6 πµ2
1(D) = πF 4

1,1
∼= 36.12,

where r0 is the conformal radius of Ω at the origin. More explicit but less sharp

inequalities are

⊲ |Ω0|(µ1 + µ2) 6 2πµ1(D) = 2πF 2
1,1

∼= 21.30,

⊲ |Ω0| |Ω|µ1µ2 6 π
2µ2

1(D) = π
2F 4

1,1
∼= 113.42,

where Ω0 is the largest disk inscribed in Ω centered at the origin. The second

inequality here somehow supports Polterovich’s suggestion (1.7) and also shows the

hope and the possibility of solving (1.7).

An interesting attempt is trying to generalize the above conclusions for bounded

domains in Euclidean spaces to the case of bounded domains on manifolds. This
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attempt has been carried out already. For instance, Xia in [14] generalized Ashbaugh-

Benguria’s estimates (1.4) and (1.5) to the following setting: for a bounded domain Ω

with smooth boundary in an n-dimensional (n > 2) simply connected Hadamard

manifold having Ricci curvature Ric > −(n − 1)k2, the first nonzero n Neumann

eigenvalues satisfy

(1.8)
1

µ1
+

1

µ2
+ . . .+

1

µn
> C(n, |Ω|, |k|),

where C(n, |Ω|, |k|) is a computable constant depending only on n, |Ω| and |k|.
The purpose of this paper is to improve Xia’s estimate (1.8) under a weaker cur-

vature assumption. Before stating our main result, we need the notion of radial

Ricci curvature lower bound – for the precise statement of radial (Ricci or sectional)

curvature being bounded and related geometric applications, see e.g. [8], [10].

Definition 1.1. Given a continuous function k : (0, l) → R, we say that the

preseribed n-dimensional (n > 2) complete Riemannian manifold M has a radial

Ricci curvature lower bound (n − 1)k along any unit-speed minimizing geodesic

starting from a point p ∈ M if

(1.9) Ric(vx, vx) > (n− 1)k(t(x)) ∀x ∈ M \ (Cut(p) ∪ {p}),

where Ric denotes the Ricci curvature of M , Cut(p) is the cut-locus of p, t(x) =

d(x, p) is the Riemannian distance from p to x, and vx is the radial unit tangent

vector of the geodesic at x.

Remark 1.1. If (1.9) is satisfied, then we say thatM has a radial Ricci curvature

lower bound with respect to the point p. Clearly, if furthermore M is a Hadamard

manifold (i.e., the sectional curvature KM satisfies KM 6 0), then by the Cartan-

Hadamard theorem, p has no conjugate point, which implies that Cut(p) is empty.

In this setting, k(t) is a continuous function on (0,∞).

Our result is the following.

Theorem 1.1. Let M be an n-dimensional (n > 2) complete simply con-

nected Hadamard manifold having a radial Ricci curvature lower bound (n− 1)k(t)

w.r.t. some point p ∈ M , where t = d(·, p) is the Riemannian distance on M to p,

and k(t) is a nonpositive continuous function on (0,∞). Let B(p, l) be the geodesic

ball with center p and radius l on M . Assume that f(t) is the solution to the initial

value problem (IVP for short)

(1.10)

{
f ′′(t) + k(t)f(t) = 0 on (0,∞),

f(0) = 0, f ′(0) = 1.
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Then the first n nonzero Neumann eigenvalues µi of the Laplacian on B(p, l) satisfy

(1.11)
1

µ1
+

1

µ2
+ . . .+

1

µn
>

ln+2

(n+ 2)
∫ l

0 f
n−1(t) dt

.

Remark 1.2. If KM ≡ 0, then f(t) = t and the estimate (1.11) becomes

1

µ1
+

1

µ2
+ . . .+

1

µn
>

nl2

n+ 2
.

If inf
t∈(0,l)

k(t) = k− < 0, then

f(t) =
sinh(

√
−k−t)√

−k−

and the estimate (1.11) becomes

1

µ1
+

1

µ2
+ . . .+

1

µn
>

(
√
−k−)n−1ln+2

(n+ 2)
∫ l

0(sinh(
√
−k−t))n−1 dt

.

2. Proof of Theorem 1.1

Denote by TpM and SpM ⊂ TpM the tangent space (at p) and its unit sphere

(centered at the origin), respectively. Let expp be the exponential map of M at p.

Let {ui}∞i=0 be the sequence of orthonormal eigenfunctions corresponding to the

Neumann eigenvalues {µi}∞i=0 of (♯) with Ω = B(p, l). By Rayleigh’s theorem and the

Max-min theorem (see [6], pages 16–17), we know that the ith Neumann eigenvalue µi

of (♯) with Ω = B(p, l) is given by

(2.1)

µi = min

{∫
B(p,l)

|∇u|2 dv
∫
B(p,l) u

2 dv
: u ∈ W 1,2

0 (B(p, l)), u 6= 0, u ⊥ span(u0, u1, . . . , ui−1)

}
,

where dv is the volume element onM ,W 1,2
0 (B(p, l)) is the completion of C∞(B(p, l)),

the space of all smooth functions defined on B(p, l), under the Sobolev norm

|w|1,2 :=

∫

B(p,l)

|∇w|2 dv +
∫

B(p,l)

w2 dv,

and span(u0, u1, . . . , ui−1) is the space spanned by u0, u1, . . . , ui−1.
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For any ~v ∈ SpM , let γ(t) with γ(0) = p and γ′(0) = ~v be the unit-speed

minimizing geodesic emanating from p. By the Cartan-Hadamard theorem, since

KM 6 0, γ(t) = expp(t~v) with expp(·) the exponential map gives a diffeomorphism
from TpM to M , and γ(t) can extend to infinity. Let {e1, e2, . . . , en} be an or-
thonormal basis of TpM satisfying for some ~v0 ∈ SpM (which is the initial tangent

vector of a unit-speed minimizing geodesic γ̃(t) determined below, i.e., γ̃(0) = p,

γ̃′(0) = ~v0),
∫
SpM

〈~v0, ei〉dσ = 0 with dσ the volume element of SpM . Parallel trans-

late {e1, e2, . . . , en} along the geodesics γ(t) and then a differentiable orthonormal
frame field {E1, E2, . . . , En} on M can be obtained. Define a vector field Y (q) on

B(p, l) as

Y (q) :=
n∑

i=1

(∫

B(p,l)

〈exp−1
q (z), ei〉dv

)
Ei(q),

which is continuous. The convexity of B(p, l) implies that on the boundary ∂B(p, l)

ofB(p, l), Y points into B(p, l). Then using the Brouwer fixed point theorem (see [5]),

we know that Y (q) has a zero q0. Since there exists some ~v0 ∈ SpM such that the

unit-speed minimizing geodesic γ̃(t) with γ̃(0) = p, γ̃′(0) = ~v0, γ̃(t0) = q0 for some

0 < t0 < l, joining p and q0 can be determined uniquely, hence β(t) := γ̃(t0 − t)

must be the unit-speed minimizing geodesic, emanating from q0, with β(0) = q0,

β(t0) = p, β′(t0) = −~v0. Therefore, one has

∇β′(t)Y = −
n∑

i=1

(∫

SpM

〈exp−1
q (z), ei〉dσ

)
Ei(q),

which implies

∇~v0Y (p) =
n∑

i=1

(∫

SpM

〈~v0, ei〉dσ
)
ei = ~0,

the zero vector. Hence, q0 coincides with p if one suitably chooses the orthonormal

basis {e1, e2, . . . , en} of TpM (which is diffeomorphic to the Euclidean n-space Rn)

such that
∫
SpM

〈~v0, ei〉dσ = 0. Then Y (p) = ~0, which implies

∫

B(p,l)

〈exp−1
p (z), ei〉dv = 0

for i = 1, 2, . . . , n. Therefore, for the Riemannian normal coordinates y : M → Rn

determined by the orthonormal frame (p; e1, e2, . . . , en), we know that their coordi-

nate functions yi : M → Rn, i = 1, 2, . . . , n, satisfy

(2.2)

∫

B(p,l)

yi(q) dv =

∫

B(p,l)

〈exp−1
p (q), ei〉dv = 0
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for i = 1, 2, . . . , n. For any ~v ∈ SpM , let 〈exp−1
p , ~v〉 be the function on M defined by

〈exp−1
p , ~v〉(q) = 〈exp−1

p (q), ~v〉 for any q ∈ B(p, l). Then (2.2) is equivalent to saying

that

(2.3)

∫

B(p,l)

〈exp−1
p , ei〉dv = 0

holds for i = 1, 2, . . . , n. Therefore, for any η ∈ SpM , by (2.3), we have

(2.4)

∫

B(p,l)

〈exp−1
p , η〉dv = 0.

As in [1], [14], by the Borsuk-Ulam theorem in [11], page 266, one can find (n − 1)

unit orthogonal vectors η2, . . . , ηn−1 in TpM such that

(2.5)

∫

B(p,l)

〈exp−1
p , ηj〉ui dv = 0

for j = 2, 3, . . . , n and i = 1, 2, . . . , j − 1. In fact, one can define a mapping fn :

SpM → Rn−1 componentwise by

(2.6) fn,k : η →
∫

Ω

〈exp−1
p , η〉uk dv for k = 1, 2, . . . , n− 1.

By the Borsuk-Ulam theorem, there exists η ∈ SpM such that fn(η) = 0, since SpM

is isometric to the (n − 1)-dimensional unit Euclidean sphere and fn is antipode

preserving. Taking η as ηn, then we have found a unit vector ηn ∈ SpM satisfying

(2.7)

∫

B(p,l)

〈exp−1
p , ηn〉ui dv = 0, i = 1, 2, . . . , n− 1.

Set Sn−2
ηn

:= {η ∈ SpM : 〈η, ηn〉 = 0}, which is isometric to an (n − 2)-dimensional

unit Euclidean sphere. By an argument similar to the above, one can find a unit

vector ηn−1 ∈ Sn−2
ηn
such that

(2.8)

∫

B(p,l)

〈exp−1
p , ηn−1〉ui dv = 0, i = 1, 2, . . . , n− 2.

Repeating the above process, one can finally obtain (n−1) mutually orthogonal unit

tangent vectors η2, η3, . . . , ηn ∈ SpM satisfying (2.5).

Extending {η2, η3, . . . , ηn} to an orthonormal basis {η1, η2, η3, . . . , ηn} of TpM ,

then for the Riemannian normal coordinates x : M → Rn on M determined

by (p; η1, η2, η3, . . . , ηn), the corresponding coordinate functions xi : M → R,
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i = 1, 2, . . . , n, are given by xi(q) = 〈exp−1
p (q), ηi〉. Since the eigenfunction u0

of the first Neumann eigenvalue µ0 is the constant function 1/
√
V(B(p, r)) with V(·)

the volume of a given geometric object, by (2.4) and (2.5) one has

(2.9)

∫

B(p,l)

xjui dv = 0 for j = 1, 2, . . . , n and i = 0, 1, 2, . . . , j − 1.

Choosing trial functions ϕ1, ϕ2, . . . , ϕn as ϕj = xj , j = 1, 2, . . . , n, then by (2.1)

and (2.9) we have

(2.10) µi 6

∫
B(p,l)

|∇xi|2 dv
∫
B(p,l)

(xi)2 dv

for i = 1, 2, . . . , n. Denote by {∂/∂xk, k = 1, 2, . . . , n} the natural basis of tan-
gent spaces associated to the coordinate chart x. Set gkl := 〈∂/∂xk, ∂/∂xl〉 for
k, l = 1, 2, . . . , n. Since KM 6 0, by Rauch’s comparison theorem, we know that

all the eigenvalues of the matrix (gkl) are greater than or equal to 1. Hence all the

eigenvalues of its inverse matrix (gkl) := (gkl)
−1 are less than or equal to 1, which

implies that the diagonal elements of (gkl) are all less than or equal to 1, i.e., gkk 6 1,

k = 1, 2, . . . , n. Therefore, for i = 1, 2, . . . , n, we have

(2.11) |∇xi|2 =

〈 n∑

k=1

gik
∂

∂xk
,

n∑

l=1

gil
∂

∂xl

〉
= gii 6 1.

Substituting (2.11) into (2.10) yields

µi 6

∫
B(p,l) dv∫

B(p,l)
(xi)2 dv

=
V(B(p, l))∫

B(p,l)
(xi)2 dv

for i = 1, 2, . . . , n, which implies that

(2.12)

n∑

i=1

1

µi
>

∫
B(p,l)

∑n
i=1(x

i)2 dv

V(B(p, l))
=

∫
B(p,l)

∑n
i=1〈exp−1

p , ei〉2 dv
V(B(p, l))

=

∫
B(p,l)

t2 dv

V(B(p, l))

with t = d(p, ·) the Riemannian distance to the point p. Since KM 6 0, by Bishop’s

volume comparison theorem we have that the area of the boundary of the geodesic

ball B(p, t) satisfies

A(∂B(p, r)) > wn−1r
n−1,
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where wn−1 denotes the area of the (n − 1)-dimensional unit sphere Sn−1 in Rn.

Hence, one has

(2.13)

∫

B(p,l)

t2 dv =

∫ l

0

(∫

∂B(p,r)

t2 dAr

)
dr =

∫ l

0

r2A(∂B(p, r)) dr

> wn−1

∫ l

0

rn+1 dr =
wn−1

n+ 2
ln+2,

where dAt is the area element of ∂B(p, t).

On the other hand, since the radial Ricci curvature of M is bounded from below

by (n − 1)k(t) with respect to p, by the generalized Bishop’s volume comparison

theorem I (see [8], Theorem 3.3 and Corollary 3.5) we have

(2.14) V(B(p, l)) 6 V(Vn(p
−, l)),

where Vn(p
−, l) is the geodesic ball, with center p− and radius l, of the spherically

symmetric manifoldM− := [0,∞)×f(t)S
n−1 with the base point p− and the warping

function determined by the IVP (1.10). The equality in (2.14) holds if and only

if B(p, l) is isometric to Vn(p
−, l). Since V(Vn(p

−, l)) = wn−1

∫ l

0
fn−1(t) dt, we have

(2.15) V(B(p, l)) 6 wn−1

∫ l

0

fn−1(t) dt.

By (2.12), (2.13) and (2.15), it is easy to get that

n∑

i=1

1

µi
>

ln+2

(n+ 2)
∫ l

0 f
n−1(t) dt

,

which completes the proof of Theorem 1.1. �
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