[2] Barry, P.:
On the central coefficients of Riordan matrices. J. Integer Seq. 16 (2013), Article 13.5.1, 12 pages.
MR 3065330 |
Zbl 1310.11032
[13] Mansour, T., Schork, M., Sun, Y.:
Motzkin numbers of higher ranks: Generating function and explicit expression. J. Integer Seq. 10 (2007), Article 07.7.4, 11 pages.
MR 2322499 |
Zbl 1141.05308
[17] Niederhausen, H.:
Inverses of Motzkin and Schröder paths. Integers 12 (2012), Article ID A49, 19 pages.
MR 3083422 |
Zbl 1290.05011
[18] Nkwanta, A., Shapiro, L. W.:
Pell walks and Riordan matrices. Fibonacci Q. 43 (2005), 170-180.
MR 2147953 |
Zbl 1074.60053
[19] Pergola, E., Sulanke, R. A.:
Schröder triangles, paths, and parallelogram polyominoes. J. Integer Seq. 1 (1998), Article 98.1.7.
MR 1677075 |
Zbl 0974.05003
[22] Rogers, D. G., Shapiro, L. W.:
Some correspondence involving the Schröder numbers and relations. Combinatorial Mathematics Lecture Notes in Mathematics 686, Springer, Berlin (1978).
DOI 10.1007/BFb0062541 |
MR 0526754
[23] Schröder, E.: Vier kombinatorische probleme. Schloemilch Z. (Zs. f. Math. u. Phys.) 15 (1870), 361-376 German \99999JFM99999 02.0108.04.
[26] Song, C.:
The generalized Schröder theory. Electron. J. Comb. 12 (2005), Article ID 53, 10 pages.
MR 2176529 |
Zbl 1077.05010
[31] Woan, W.-J.:
A relation between restricted and unrestricted weighted Motzkin paths. J. Integer Seq. 9 (2006), Article 06.1.7, 12 pages.
MR 2188940 |
Zbl 1101.05008