Previous |  Up |  Next

Article

Keywords:
meromorphic function; Nevanlinna theory; annulus
Summary:
This paper deals with the finiteness problem of meromorphic funtions on an annulus sharing four values regardless of multiplicity. We prove that if three admissible meromorphic functions $f_1$, $f_2$, $f_3$ on an annulus $\mathbb A({R_0})$ share four distinct values regardless of multiplicity and have the {\it complete identity set} of positive counting function, then $f_1=\nobreak f_2$ or $f_2=f_3$ or $f_3=f_1$. This result deduces that there are at most two admissible meromorphic functions on an annulus sharing a value with multiplicity truncated to level $2$ and sharing other three values regardless of multiplicity. This result also implies that there are at most three admissible meromorphic functions on an annulus sharing four values regardless of multiplicities. These results are a generalization and improvement of the previous results on finiteness problem of meromorphic functions on $\mathbb C$ sharing four values.
References:
[1] Banerjee, A.: Weighted sharing of a small function by a meromorphic function and its derivative. Comput. Math. Appl. 53 (2007), 1750-1761. DOI 10.1016/j.camwa.2006.10.026 | MR 2332104 | Zbl 1152.30321
[2] Bhoosnurmath, S. S., Dyavanal, R. S.: Uniqueness and value-sharing of meromorphic functions. Comput. Math. Appl. 53 (2007), 1191-1205. DOI 10.1016/j.camwa.2006.08.045 | MR 2327673 | Zbl 1170.30011
[3] Cao, T.-B., Deng, Z.-S.: On the uniqueness of meromorphic functions that share three or two finite sets on annuli. Proc. Indian Acad. Sci., Math. Sci. 122 (2012), 203-220. DOI 10.1007/s12044-012-0074-7 | MR 2945092 | Zbl 1269.30036
[4] Cao, T.-B., Yi, H.-X., Xu, H.-Y.: On the multiple values and uniqueness of meromorphic functions on annuli. Comput. Math. Appl. 58 (2009), 1457-1465. DOI 10.1016/j.camwa.2009.07.042 | MR 2555283 | Zbl 1189.30065
[5] Fujimoto, H.: Uniqueness problem with truncated multiplicities in value distribution theory. Nagoya Math. J. 152 (1998), 131-152. DOI 10.1017/S0027763000006826 | MR 1659377 | Zbl 0937.32010
[6] Gundersen, G. G.: Meromorphic functions that share four values. Trans. Am. Math. Soc. 277 (1983), 545-567. DOI 10.2307/1999223 | MR 0694375 | Zbl 0508.30029
[7] Ishizaki, K., Toda, N.: Unicity theorems for meromorphic functions sharing four small functions. Kodai Math. J. 21 (1998), 350-371. DOI 10.2996/kmj/1138043945 | MR 1664754 | Zbl 0946.30019
[8] Khrystiyanyn, A. Y., Kondratyuk, A. A.: On the Nevanlinna theory for meromorphic functions on annuli. I. Mat. Stud. 23 (2005), 19-30. MR 2150985 | Zbl 1066.30036
[9] Khrystiyanyn, A. Y., Kondratyuk, A. A.: On the Nevanlinna theory for meromorphic functions on annuli. II. Mat. Stud. 24 (2005), 57-68. MR 2210430 | Zbl 1092.30048
[10] Li, X., Yi, H., Hu, H.: Uniqueness results of meromorphic functions whose derivatives share four small functions. Acta Math. Sci., Ser. B, Engl. Ed. 32 (2012), 1593-1606. DOI 10.1016/S0252-9602(12)60126-X | MR 2927447 | Zbl 1274.30120
[11] Lund, M., Ye, Z.: Nevanlinna theory of meromorphic functions on annuli. Sci. China, Math. 53 (2010), 547-554. DOI 10.1007/s11425-010-0037-3 | MR 2608311 | Zbl 1193.30044
[12] Nevanlinna, R.: Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen. Acta Math. 48 German (1926), 367-391. DOI 10.1007/BF02565342 | MR 1555233 | Zbl 52.0323.03
[13] Quang, S. D.: Unicity of meromorphic functions sharing some small functions regardless of multiplicities. Int. J. Math. 23 (2012), Article ID 1250088, 18 pages. DOI 10.1142/S0129167X12500887 | MR 2959434 | Zbl 1284.30020
[14] Quang, S. D.: Finiteness problem of meromorphic functions sharing four small functions regardless of multiplicities. Int. J. Math. 25 (2014), Article ID 1450102, 20 pages. DOI 10.1142/S0129167X1450102X | MR 3285302 | Zbl 1304.30044
Partner of
EuDML logo