Previous |  Up |  Next

Article

Keywords:
Hoop; (implicative, maximal, prime) ideal; MV-algebra; Boolean algebra
Summary:
In this paper, we define and characterize the notions of (implicative, maximal, prime) ideals in hoops. Then we investigate the relation between them and prove that every maximal implicative ideal of a $\vee $-hoop with double negation property is a prime one. Also, we define a congruence relation on hoops by ideals and study the quotient that is made by it. This notion helps us to show that an ideal is maximal if and only if the quotient hoop is a simple MV-algebra. Also, we investigate the relationship between ideals and filters by exploiting the set of complements.
References:
[1] Alavi, S. Z., Borzooei, R. A., Kologani, M. Aaly: Filter theory of pseudo hoop-algebras. Ital. J. Pure Appl. Math. 37 (2017), 619-632. MR 3622960 | Zbl 1388.06011
[2] Saeid, A. Borumand, Motamed, S.: Some results in BL-algebras. Math. Log. Q. 55 (2009), 649-658. DOI 10.1002/malq.200910025 | MR 2582165 | Zbl 1188.03047
[3] Borzooei, R. A., Kologani, M. Aaly: Filter theory of hoop-algebras. J. Adv. Res. Pure Math. 6 (2014), 72-86. DOI 10.5373/jarpm.1895.120113 | MR 3297683
[4] Borzooei, R. A., Kologani, M. Aaly: Stabilizer topology of hoops. J. Alg. Structures and Their Appl. 1 (2014), 35-48.
[5] Bosbach, B.: Komplementäre Halbgruppen. Axiomatik und Arithmetik. Fundam. Math. 64 (1969), 257-287 German. DOI 10.4064/fm-64-3-257-287 | MR 0260902 | Zbl 0183.30603
[6] Bosbach, B.: Komplementäre Halbgruppen. Kongruenzen und Quotienten. Fundam. Math. 69 (1970), 1-14 German. DOI 10.4064/fm-69-1-1-14 | MR 0277452 | Zbl 0263.20037
[7] Nola, A. Di, Leuştean, L.: Compact representations of BL-algebras. Arch. Math. Logic 42 (2003), 737-761. DOI 10.1007/s00153-003-0178-y | MR 2020041 | Zbl 1040.03048
[8] Esteva, F., Godo, L.: Monoidal t-norm based logic, towards a logic for left-continuous t-norms. Fuzzy Sets Syst. 124 (2001), 271-288. DOI 10.1016/S0165-0114(01)00098-7 | MR 1860848 | Zbl 0994.03017
[9] Georgescu, G., Leuştean, L., Preoteasa, V.: Pseudo-hoops. J. Mult.-Val. Log. Soft Comput. 11 (2005), 153-184. MR 2162590 | Zbl 1078.06007
[10] Hájek, P.: Mathematics of Fuzzy Logic. Trends in Logic-Studia Logica Library 4. Kluwer Academic Publishers, Dordrecht (1998). DOI 10.1007/978-94-011-5300-3 | MR 1900263 | Zbl 0937.03030
[11] Kondo, M., Dudek, W. A.: Filter theory of BL-algebras. Soft Comput. 12 (2008), 419-423. DOI 10.1007/s00500-007-0178-7 | Zbl 1165.03056
[12] Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Logic Without Contraction. Japan Advanced Institute of Science and Technology (2001).
[13] Namdar, A., Borzooei, R. A., Saeid, A. Borumand, Kologani, M. Aaly: Some results in hoop algebras. J. Intell. Fuzzy Syst. 32 (2017), 1805-1813. DOI 10.3233/JIFS-152553 | Zbl 1375.06015
Partner of
EuDML logo