Previous |  Up |  Next

Article

Keywords:
T-norm; bounded lattice; construction method; subinterval
Summary:
In this paper, a construction method on a bounded lattice obtained from a given t-norm on a subinterval of the bounded lattice is presented. The supremum distributivity of the constructed t-norm by the mentioned method is investigated under some special conditions. It is shown by an example that the extended t-norm on $L$ from the t-norm on a subinterval of $L$ need not be a supremum-distributive t-norm. Moreover, some relationships between the mentioned construction method and the other construction methods in the literature are presented.
References:
[1] G., Birkhoff,: Lattice Theory. Third edition. Providence 1967. DOI 10.1090/coll/025 | MR 0227053
[2] D., Çaylı, G.: On a new class of t-norms and t-conorms on bounded lattices. Fuzzy Sets and Systems 332 (2018), 129-143. DOI 10.1016/j.fss.2017.07.015 | MR 3732255
[3] P., Drygaś,, B., Pekala,: Properties of decomposable operations on same etension of the fuzzy set theory. In: Advences in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics (K. T. Atanassov, O. Hryniewicz, J. Kacprzyk, M. Krawczak, Z. Nahorski, E. Szmidt, S. Zadrozny, eds.), Vol. I, Foundations, EXIT, Warszawa 2008, pp. 115-118. MR 1478260
[4] Ü., Ertuğrul,, F., Karaçal,, R., Mesiar,: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Systems 30 (2015), 807-817. DOI 10.1002/int.21713
[5] M., Grabisch,, L., Marichal, J., R., Mesiar,, E., Pap,: Aggregation Functions. Cambridge University Press, 2009. DOI 10.1017/cbo9781139644150 | MR 2538324 | Zbl 1206.68299
[6] F., Karaçal,: On the direct decomposability of strong negations and S-implication operators on product lattices. Inform. Sci. 176 (2006), 3011-3025. DOI 10.1016/j.ins.2005.12.010 | MR 2247614 | Zbl 1104.03016
[7] F., Karaçal,, D., Khadjiev,: $\vee$-Distributive and infinitely $\vee$-distributive t-norms on complete lattices. Fuzzy Sets Systems 151 (2005), 341-352. DOI 10.1016/j.fss.2004.06.013 | MR 2124884
[8] F., Karaçal,, N., Kesicioğlu, M.: A T-partial order obtained from t-norms. Kybernetika 47 (2011), 300-314. MR 2828579 | Zbl 1245.03086
[9] P, Klement, E.., R., Mesiar,, E., Pap,: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. MR 1790096 | Zbl 1087.20041
[10] J., Martin,, G., Mayor,, J., Torrens,: On locally internal monotonic operations. Fuzzy Sets Syst. 137 (2003), 27-42. DOI 10.1016/s0165-0114(02)00430-x | MR 1992696 | Zbl 1022.03038
[11] K.Menger: Statistical metrics. Proc. Natl. Acad. Sci. USA 8 (1942), 535-537. DOI 10.1073/pnas.28.12.535 | MR 0007576
[12] S., Saminger,: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Systems 157 (2006), 10, 1403-1416. DOI 10.1016/j.fss.2005.12.021 | MR 2226983 | Zbl 1099.06004
[13] B., Schweizer,, A., Sklar,: Espaces metriques aléatoires. C. R. Acad. Sci. Paris Ser. A 247 (1958), 2092-2094. MR 0099068
[14] B., Schweizer,, A., Sklar,: Statistical metric spaces. Pacific J. Math. 10 (1960), 313-334. DOI 10.2140/pjm.1960.10.313 | MR 0115153 | Zbl 0136.39301
[15] K., Tsadiras, A., G., Margaritis, R.: The MYCIN certainty factor handling function as uninorm operator and its use as a threshold function in artificial neurons. Fuzzy Sets Syst. 93 (1998), 263-274. DOI 10.1016/s0165-0114(96)00185-6 | MR 1605312
Partner of
EuDML logo