[3] P., Drygaś,, B., Pekala,:
Properties of decomposable operations on same etension of the fuzzy set theory. In: Advences in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics (K. T. Atanassov, O. Hryniewicz, J. Kacprzyk, M. Krawczak, Z. Nahorski, E. Szmidt, S. Zadrozny, eds.), Vol. I, Foundations, EXIT, Warszawa 2008, pp. 115-118.
MR 1478260
[4] Ü., Ertuğrul,, F., Karaçal,, R., Mesiar,:
Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Systems 30 (2015), 807-817.
DOI 10.1002/int.21713
[5] M., Grabisch,, L., Marichal, J., R., Mesiar,, E., Pap,:
Aggregation Functions. Cambridge University Press, 2009.
DOI 10.1017/cbo9781139644150 |
MR 2538324 |
Zbl 1206.68299
[7] F., Karaçal,, D., Khadjiev,:
$\vee$-Distributive and infinitely $\vee$-distributive t-norms on complete lattices. Fuzzy Sets Systems 151 (2005), 341-352.
DOI 10.1016/j.fss.2004.06.013 |
MR 2124884
[8] F., Karaçal,, N., Kesicioğlu, M.:
A T-partial order obtained from t-norms. Kybernetika 47 (2011), 300-314.
MR 2828579 |
Zbl 1245.03086
[9] P, Klement, E.., R., Mesiar,, E., Pap,:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.
MR 1790096 |
Zbl 1087.20041
[13] B., Schweizer,, A., Sklar,:
Espaces metriques aléatoires. C. R. Acad. Sci. Paris Ser. A 247 (1958), 2092-2094.
MR 0099068
[15] K., Tsadiras, A., G., Margaritis, R.:
The MYCIN certainty factor handling function as uninorm operator and its use as a threshold function in artificial neurons. Fuzzy Sets Syst. 93 (1998), 263-274.
DOI 10.1016/s0165-0114(96)00185-6 |
MR 1605312