[1] J., Ahmadi,, K., MirMostafaee, S. M. T.:
Prediction intervals for future records and order statistics coming from two parameter exponential distribution. Stat. Probab. Lett. 79 (2009), 977-983.
DOI 10.1016/j.spl.2008.12.002 |
MR 2509490
[2] A., Baklizi,:
Interval estimation of the stress-strength reliability in the two-parameter exponential distribution based on records. J. Stat. Comput. Simul. 84 (2014), 2670-2679.
DOI 10.1080/00949655.2013.816307 |
MR 3250965
[6] M., Engelhardt,, J., Bain, L.:
Tolerance limits and confidence limits on reliability for the two-parameter exponential distribution. Technometrics 20 (1978), 37-39.
DOI 10.1080/00401706.1978.10489615
[7] A., Ganguly,, S., Mitra,, D., Samanta,, D., Kundu,:
Exact inference for the two-parameter exponential distribution under Type-II hybrid censoring. J. Stat. Plan. Inference 142 (2012), 613-625.
DOI 10.1016/j.jspi.2011.08.001 |
MR 2853570
[8] S., Huang,, A., Mukherjee,, J., Yang,:
Two CUSUM schemes for simultaneous monitoring of parameters of a shifted exponential time to events. Qual. Reliab. Eng. Int. 34 (2018), 6, 1158-1173.
DOI 10.1002/qre.2314
[9] L., Johnson, N., S., Kotz,:
Distributions in Statistics, Vol. 1: Continuous Univariate Distributions. Houghton Mifflin, Boston 1970.
MR 0270475
[11] K., Krishnamoorthy,, Y., Xia,:
Confidence intervals for a two-parameter exponential distribution: one- and two-sample problems. Commun. Stat. Theory Methods 47 (2018), 935-952.
DOI 10.1080/03610926.2017.1313983 |
MR 3750706
[12] K., Krishnamoorthy,, S., Mukherjee,, H., Guo,:
Inference on reliability in two-parameter exponential stress-strength model. Metrika 65 (2007), 261-273.
DOI 10.1007/s00184-006-0074-7 |
MR 2299551
[13] J., Li,, W., Song,, J., Shi,:
Parametric bootstrap simultaneous confidence intervals for differences of means from several two-parameter exponential distributions. Stat. Probab. Lett. 106 (2015), 39-45.
DOI 10.1016/j.spl.2015.07.002 |
MR 3389968
[14] A., Mukherjee,, K., McCracken, A., S., Chakraborti,:
Control Charts for simultaneous monitoring of parameters of a shifted exponential distribution. J. Qual. Technol. 47 (2015), 176-192.
DOI 10.1016/j.spl.2015.07.002
[15] M., Pal,, A., Masoom, M., J., Woo,:
Estimation and testing of $P(Y > X)$ in two parameter exponential distributions. Statistics 39 (2005), 415-428.
DOI 10.1080/02331880500274031 |
MR 2207457
[16] Z., Raqab, M.:
Approximate maximum likelihood predictors of future failure times of shifted exponential distributions under multiple type II censoring. Stat. Methods Appl. 13 (2004), 43-54.
DOI 10.1007/s10260-004-0084-4 |
MR 2081964
[18] S., Sangnawakij,, S., Niwitpong,:
Confidence intervals for coefficients of variation in two-parameter exponential distributions. Commun. Stat. Simul. Comp. 46 (2017), 6618-6630.
DOI 10.1080/03610918.2016.1208236 |
MR 3740801
[19] N., Schenk,, M., Burkschat,, E., Cramer,, U., Kamps,:
Bayesian estimation and prediction with multiply Type-II censored samples of sequential order statistics from one-and two-parameter exponential distributions. J. Stat. Plan. Inference 141 (2011), 1575-1587.
DOI 10.1016/j.jspi.2010.11.009 |
MR 2747926
[26] H.-M., Lee, J.-W. Wu., C.-L., Lei,:
Computational testing algorithmic procedure of assessment for lifetime performance index of products with two-parameter exponential distribution. Appl. Math. Comput. 190 (2007), 116-125.
DOI 10.1016/j.amc.2007.01.010 |
MR 2335434
[27] S.-F., Wu,:
Interval estimation for the two-parameter exponential distribution under progressive censoring. Qual. Quant. 44 (2010), 181-189.
DOI 10.1007/s11135-008-9187-6