Previous |  Up |  Next

Article

Keywords:
Markov-switching models; periodic $GARCH$ models; periodic stationarity; higher-order moments; Markov-switching $PGARCH$ models; $GMM$ method
Summary:
In this paper, we propose an extension of a periodic $GARCH$ ($PGARCH$) model to a Markov-switching periodic $GARCH$ ($MS$-$PGA$ $RCH$), and provide some probabilistic properties of this class of models. In particular, we address the question of strictly periodically and of weakly periodically stationary solutions. We establish necessary and sufficient conditions ensuring the existence of higher order moments. We further provide closed-form expressions for calculating the even-order moments as well as the autocovariances of the powers of a $MS$-$PGARCH$ process. We thus show how these moments and autocovariances can be used for estimating model parameters using $GMM$ method.
References:
[1] A., Aknouche,, M., Bentarzi,: On the existence of higher-order moments for periodic $GARCH$ models. Statist. Probab. Lett. 78 (2008), 3262-3268. DOI 10.1016/j.spl.2008.06.010 | MR 2479488
[2] A., Aknouche,, A., Bibi,: Quasi-maximum likelihood estimation of periodic $GARCH$ and periodic $ARMA$-$GARCH$ processes. J. Time Series Anal. 28 (2009), 19-46. DOI 10.1016/j.spl.2008.06.010 | MR 2488634
[3] A., Aknouche,, H., Guerbyenne,: Periodic stationarity of random coefficient periodic autoregressions. Statist. Probab. Lett. 79 (2009), 990-996. DOI 10.1016/j.spl.2008.12.012 | MR 2509491
[4] B., Aliat,, F., Hamdi,: On markov-switching periodic $ARMA$ models. Comm. Statist. Theory Methods 47 (2018), 344-364. DOI 10.1080/03610926.2017.1303734 | MR 3765077
[5] M., Augustyniak,: Maximum likelihood estimation of the Markov-switching $GARCH$ model. Comput. Statist. Data Anal. 76 (2014), 61-75. DOI 10.1016/j.csda.2013.01.026 | MR 3209427
[6] M., Augustyniak,, M., Boudreault,, M., Morales,: Maximum likelihood estimation of the Markov-switching GARCH model based on a general collapsing procedure. Methodol. Comput. Appl. Probab. 20 (2018), 165-188. DOI 10.1007/s11009-016-9541-4 | MR 3760343
[7] L., Bauwens,, A., Preminger,, K., Rombouts, J. V.: Theory and inference for Markov switching $GARCH$ model. Econometr. J. 13 (2010), 218-244. DOI 10.1111/j.1368-423x.2009.00307.x | MR 2722883
[8] M., Bentarzi,, F., Hamdi,: Mixture periodic autoregressive conditional heteroskedastic models. Comput. Statist. Data Anal. 53 (2008), 1-16. DOI 10.1016/j.csda.2008.06.019 | MR 2528588
[9] M., Bentarzi,, F., Hamdi,: Mixture periodic autoregression with aeriodic $ARCH$ errors. Adv. Appl. Statist. 8 (2008), 219-46. MR 2445517
[10] A., Bibi,, A., Aknouche,: On periodic $GARCH$ processes: Stationarity Statist. 17 (2008), 305-316. DOI 10.3103/s1066530708040029 | MR 2483459
[11] A., Bibi,, I., Lescheb,: Strong consistency and asymptotic normality of least squares estimators for $PGARCH$ and $PARMA$-$PGARCH$ models. Statist. Probab. Lett. 80 (2010), 1532-1542. DOI 10.1016/j.spl.2010.06.007 | MR 2669757
[12] A., Bibi,, I., Lescheb,: A conditional least squares approach to $PGARCH$ and $PARMA$-$PGARCH$ time series estimation. Comptes Rendus Math. 348 (2010), 1211-1216. DOI 10.1016/j.crma.2010.10.019 | MR 2738929
[13] A., Bibi,, I., Lescheb,: Estimation and asymptotic properties in periodic $GARCH(1,1)$ models. Comm. Statist. Theory Methods 42 (2013), 3497-3513. DOI 10.1080/03610926.2011.633201 | MR 3170947
[14] M., Billio,, R., Casarin,, A., Osuntuyi,: Efficient Gibbs sampling for Markov switching $GARCH$ models. Comput. Statist. Data Anal. 100 (2016), 37-57. DOI 10.1016/j.csda.2014.04.011 | MR 3505789
[15] T., Bollerslev,: Generalized autoregressive conditional heteroskedasticity. J. Econometr. 31 (1986), 307-327. DOI 10.1016/0304-4076(86)90063-1 | MR 0853051
[16] T., Bollerslev,, E., Ghysels,: Periodic autoregressive conditional heteroskedasticity. J. Business Econom. Statist. 14 (1996), 139-152. DOI 10.2307/1392425
[17] P., Bougerol,, N., Picard,: Strict stationarity of generalized autoregressive processes. Ann. Probab. 20 (1992), 1714-1730. DOI 10.1214/aop/1176989526 | MR 1188039
[18] J., Cai,: A Markov model of Switching-regime $ARCH$. J. Business Econom. Statist. 12 (1994), 309-316. DOI 10.2307/1392087
[19] C., Francq,, M., Roussignol,, M., Zako\"ıan, J.: Conditional heteroskedasticity driven by hidden Markov chains. J. Time Ser. Anal. 22 (2001), 197-220. DOI 10.1111/1467-9892.00219 | MR 1820776
[20] C., Francq,, M., Zako\"ıan, J.: The $L^{2}$-structures of standard and switching-regime $GARCH$ models. Stoch. Process. Appl. 115 (2005), 1557-1582. MR 2158020
[21] C., Francq,, M., Zako\"ıan, J.: Deriving the autocovariances of powers of Markov-switching $GARCH$ models with applications to statistical inference. Computat. Statist. Data Anal. 52 (2008), 3027-3046. DOI 10.1016/j.csda.2007.08.003 | MR 2424774
[22] H., Franses, P., R., Paap,: Modeling changing day-of-the-week seasonality in stock returns and volatility. Appl. Financ. Econom. 52 (2000), 3027-3046.
[23] G., Gladyshev, E.: Periodically correlated random sequences. Doklady Akademii Nauk SSSR 137 (1961), 1026-1029. MR 0126873
[24] F., Gray, S.: Modeling the conditional distribution of interest rates as a regime-switching process. J. Financ. Econom. 42 (1996), 27-62. DOI 10.1016/0304-405x(96)00875-6
[25] M., Haas,, S., Paolella, M.: Mixture and regime-switching $GARCH$ models. In: Handbook of Volatility Models and their Applications 2012, pp. 71-102. DOI 10.1002/9781118272039.ch3 | MR 3307112
[26] M., Haas,, S., Mittnik,, S., Paolella, M.: A new approach to Markov-switching $GARCH$ models. J. Financ. Econometr. 2 (2004), 493-530. DOI 10.1093/jjfinec/nbh020
[27] F., Hamdi,, S., Souam,: Mixture periodic $GARCH $ models: Applications to exchange rate modeling. In: Modeling, Simulation and Applied Optimization (ICMSAO), 5th International Conference on IEEE, 2013. DOI 10.1109/icmsao.2013.6552570
[28] F., Hamdi,, S., Souam,: Mixture periodic $GARCH$ models: theory and applications. Empir. Econom. 55 (2018), 1925-1956. DOI 10.1007/s00181-017-1348-9
[29] D., Hamilton, J.: A new approach to the economie analysis of nonstationary time series and the business cycle. Econometrica 57 (1989), 357-384. DOI 10.2307/1912559 | MR 0996941
[30] D., Hamilton, J., R., Susmel,: Autoregressive condiational heteroskedasticity and changes in regime. J. Econometr. 64 (1994), 307-333. DOI 10.1016/0304-4076(94)90067-1
[31] S., Henneke, J., T., Rachev, S., J., Fabozzi, F., M.Nikolov: MCMC-based estimation of Markov switching $ARMA$-$GARCH$ models. Appl. Econom. 43 (2011), 259-271. DOI 10.1080/00036840802552379
[32] A., Horn, R., R., Johnson, C.: Matrix Analysis. Second edition. Cambridge University Press, New York 2013. MR 2978290
[33] F., Klaassen,: Improving $GARCH$ volatility forecasts. Empir. Econometr. 27 (2002), 363-394. DOI 10.1007/s001810100100
[34] P., Lancaster,, M., Tismenetsky,: The Theory of Matrices. Academic Press, New York 1985. MR 0792300
[35] O., Lee,, W., Shin, D.: Geometric ergodicity and moment conditions for a seasonal $GARCH$ model with periodic coefficients. Comm. Statist. Theory Methods 39 (2009), 38-51. DOI 10.1080/03610920802715032 | MR 2654858
[36] K., Newey, W., D., West, K.: Hypothesis testing with efficient method of moments estimation. Int. Econom. Rev. 28 (1987), 3, 777-787. DOI 10.2307/2526578 | MR 0912975
[37] N., Regnard,, M., Zako\"ıan, J.: Structure and estimation of a class of nonstationary yet nonexplosive $GARCH$ models. J. Time Series Anal. 31 (2010), 348-364. DOI 10.1111/j.1467-9892.2010.00669.x | MR 2724515
Partner of
EuDML logo