Previous |  Up |  Next

Article

Keywords:
Shimura lift; Fourier coefficient; half-integral weight; Sato-Tate equidistribution
Summary:
Let $f=\sum _{n=1}^{\infty }a(n)q^{n}\in S_{k+1/2}(N,\chi _{0})$ be a nonzero cuspidal Hecke eigenform of weight $k+\frac {1}{2}$ and the trivial nebentypus $\chi _{0}$, where the Fourier coefficients $a(n)$ are real. Bruinier and Kohnen conjectured that the signs of $a(n)$ are equidistributed. This conjecture was proved to be true by Inam, Wiese and Arias-de-Reyna for the subfamilies $\{a(t n^{2})\}_{n}$, where $t$ is a squarefree integer such that $a(t)\neq 0$. Let $q$ and $d$ be natural numbers such that $(d,q)=1$. In this work, we show that $\{a(t n^{2})\}_{n}$ is equidistributed over any arithmetic progression $n\equiv d \mod q$.
References:
[1] Akiyama, S., Tanigawa, Y.: Calculation of values of $L$-functions associated to elliptic curves. Math. Comput. 68 (1999), 1201-1231. DOI 10.1090/S0025-5718-99-01051-0 | MR 1627842 | Zbl 0923.11100
[2] Arias-de-Reyna, S., Inam, I., Wiese, G.: On conjectures of Sato-Tate and Bruinier-Kohnen. Ramanujan J. 36 (2015), 455-481. DOI 10.1007/s11139-013-9547-2 | MR 3317867 | Zbl 1383.11112
[3] Barnet-Lamb, T., Geraghty, D., Harris, M., Taylor, R.: A family of Calabi-Yau varieties and potential automorphy. II. Publ. Res. Inst. Math. Sci. 47 (2011), 29-98. DOI 10.2977/PRIMS/31 | MR 2827723 | Zbl 1264.11044
[4] Bruinier, J. H., Kohnen, W.: Sign changes of coefficients of half integral weight modular forms. Modular Forms on Schiermonnikoog B. Edixhoven et al. Cambridge University Press, Cambridge (2008), 57-65. DOI 10.1017/CBO9780511543371.005 | MR 2512356 | Zbl 1228.11061
[5] Delange, H.: Un théorème sur les fonctions arithmétiques multiplicatives et ses applications. Ann. Sci. Éc. Norm. Supér. (3) 78 (1961), 1-29 French. DOI 10.24033/asens.1097 | MR 0169828 | Zbl 0109.03106
[6] Inam, I., Wiese, G.: Equidistribution of signs for modular eigenforms of half integral weight. Arch. Math. 101 (2013), 331-339. DOI 10.1007/s00013-013-0566-4 | MR 3116654 | Zbl 1333.11042
[7] Inam, I., Wiese, G.: A short note on the Bruiner-Kohnen sign equidistribution conjecture and Halász' theorem. Int. J. Number Theory 12 (2016), 357-360. DOI 10.1142/S1793042116500214 | MR 3461436 | Zbl 1404.11053
[8] Kohnen, W., Lau, Y.-K., Wu, J.: Fourier coefficients of cusp forms of half-integral weight. Math. Z. 273 (2013), 29-41. DOI 10.1007/s00209-012-0994-z | MR 3010150 | Zbl 1302.11026
[9] Korevaar, J.: The Wiener-Ikehara theorem by complex analysis. Proc. Am. Math. Soc. 134 (2006), 1107-1116. DOI 10.1090/S0002-9939-05-08060-3 | MR 2196045 | Zbl 1080.40003
[10] Mezroui, S.: Sign changes of a product of Dirichlet character and Fourier coefficients of half integral weight modular forms. Available at https://arxiv.org/abs/1706.05013, (2017), 7 pages.
[11] Murty, M. R., Murty, V. K.: The Sato-Tate conjecture and generalizations. Math. Newsl., Ramanujan Math. Soc. 19 (2010), 247-257. MR 3012726 | Zbl 1223.11071
[12] Shimura, G.: On modular forms of half-integral weight. Ann. Math. (2) 97 (1973), 440-481. DOI 10.2307/1970831 | MR 0332663 | Zbl 0266.10022
[13] Wong, P-J.: On the Chebotarev-Sato-Tate phenomenon. J. Number Theory 196 (2019), 272-290. DOI 10.1016/j.jnt.2018.09.010 | MR 3906478 | Zbl 06987935
Partner of
EuDML logo