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Abstract. Let f =
∞∑

n=1
a(n)qn ∈ Sk+1/2(N,χ0) be a nonzero cuspidal Hecke eigenform

of weight k + 1
2
and the trivial nebentypus χ0, where the Fourier coefficients a(n) are real.

Bruinier and Kohnen conjectured that the signs of a(n) are equidistributed. This conjecture
was proved to be true by Inam, Wiese and Arias-de-Reyna for the subfamilies {a(tn2)}n,
where t is a squarefree integer such that a(t) 6= 0. Let q and d be natural numbers such
that (d, q) = 1. In this work, we show that {a(tn2)}n is equidistributed over any arithmetic
progression n ≡ d mod q.

Keywords: Shimura lift; Fourier coefficient; half-integral weight; Sato-Tate equidistribu-
tion

MSC 2010 : 11F30, 11F37

1. Introduction

Let k > 2, 4 | N be integers, χ (mod N) a Dirichlet character, and let f =
∞
∑

n=1
a(n)qn ∈ Sk+1/2(N,χ) be a nonzero cuspidal Hecke eigenform of weight k + 1

2 .

Applying the Shimura lift to f for a fixed squarefree t such that a(t) 6= 0, we get

Ft =
∞
∑

n=1
At(n)q

n ∈ S2k(N/2, χ2) the Hecke eigenform of weight 2k.

When χ = 1, Bruinier and Kohnen suggested in [4] that half of the coefficients a(n)

are positive among all nonzero Fourier coefficients. This suggestion was formulated

later explicitly as a conjecture in [8]. Assuming some error term for the convergence

of the Sato-Tate distribution for integral weight modular forms in [6], Inam and Wise

showed when Ft has no CM that half of the coefficients a(tn
2) are positive. They

formulated this result in terms of Dedekind-Dirichlet density. They also showed with

Arias-de-Reyna in [2], that (a(tn2))n∈N are equidistributed when Ft has CM and the
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equidistribution was reformulated in both CM and not CM cases using Dedekind-

Dirichlet and natural densities. Later, those results were obtained in [7] by removing

the error term assumption.

The present work gives an improvement of the Bruinier-Kohnen conjecture. In-

deed, under the error term hypothesis that we will explain below, our main result is

the following theorem.

Theorem 1. Assume the setting of the introduction and suppose that Ft does

not have complex multiplication. Let q be a natural number. Suppose that for all

Dirichlet characters ε (mod q) and all roots of unity ξ such that ξ ∈ Im ε, there are

Cε,ξ > 0 and αε,ξ > 0 such that

(1)

∣

∣

∣

∣

∣

#{p 6 x prime : p ∤ N, ε(p) = ξ, At(p)

2a(t)p(k−1)/2χ(p)
∈ [a, b]}

π(x)
− µ([a, b])

# Im ε

∣

∣

∣

∣

∣

6
Cε,ξ

xαε,ξ
.

Then for all integers d, (d, q) = 1, the sets

(2)
{

n ∈ N : (n,N) = 1, n ≡ d mod q,
a(tn2)

χ(n)
> 0
}

and

{

n ∈ N : (n,N) = 1, n ≡ d mod q,
a(tn2)

χ(n)
< 0
}

have equal positive natural densities and both are half of the natural density of

(3)
{

n ∈ N : (n,N) = 1, n ≡ d mod q,
a(tn2)

χ(n)
6= 0
}

.

We discuss here two aspects of this theorem. Consider first the case when χ = 1

and the coefficients a(n) are real. Then for all natural numbers q and d such that

(d, q) = 1 we have

lim
x→∞

#{n 6 x : n ≡ d mod q, a(tn2) ≷ 0}
#{n 6 x : n ≡ d mod q, a(tn2) 6= 0} =

1

2
·

This extends the results obtained in [7], and therefore one can ask if the Bruinier-

Kohnen conjecture remains true over arithmetic progressions. We have no numerical

experiments yet to support this hypothesis.

Consider now the general case f ∈ Sk+1/2(N,χ). Let q be a natural number,

ε mod q a Dirichlet character and ξ ∈ Im ε. From the main theorem above and since
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the density of the set (3) is independent of d by Proposition 4 and Remark 2, the

sets

(4)
{

n ∈ N : (n,N) = 1, ε(n) = ξ,
a(tn2)

χ(n)
> 0
}

and

{

n ∈ N : (n,N) = 1, ε(n) = ξ,
a(tn2)

χ(n)
< 0
}

have equal positive natural densities and both are half of the natural density of

{

n ∈ N : (n,N) = 1, ε(n) = ξ,
a(tn2)

χ(n)
6= 0
}

.

In the particular case q = N and ε = χ, we deduce that when ξ 6= ±i, the sets

(5) {n ∈ N : χ(n) = ξ, Re(a(tn2)) > 0} and

{n ∈ N : χ(n) = ξ, Re(a(tn2)) < 0}

have equal positive natural densities and both are half of the natural density of

{n ∈ N : χ(n) = ξ, a(tn2) 6= 0}.

Geometrically, the coefficients a(tn2) with χ(n) = ξ belong to the same line and

they are equidistributed over it. When ξ = ±i, we obtain a similar result and the

coefficients a(tn2) with χ(n) = i or −i are equidistributed over the vertical line that

passes through i and −i. Once again, one can ask more generally if the Fourier

coefficients a(n) with (n,N) = 1, that belong to the same line, are equidistributed

geometrically as above.

2. Notions of density

Recall that the set of primes (or the set of natural numbers) S ⊆ P (or A ⊆ N)

has a natural density d(S) (or d(A)) if the limit

d(S) = lim
x→∞

πS(x)

π(x)

(

or d(A) = lim
x→∞

#{n 6 x : n ∈ A}
x

)

exists, where πS(x) and π(x) are defined by

π(x) = #{p 6 x : p ∈ P} and πS(x) = #{p 6 x : p ∈ S}.
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The set of primes (or of natural numbers) S (or A) is said to have Dirichlet den-

sity δ(S) (or Dedekind-Dirichlet density δ(A)) if the limit

δ(S) = lim
z→1+

∑

p∈S p−z

log(z − 1)−1

(

or δ(A) = lim
z→1+

(z − 1)
∑

n∈A

1

nz

)

exists. Recall that if the set A of natural numbers has natural density d(A), then

it also has Dedekind-Dirichlet density δ(A) with d(A) = δ(A). Further, the set of

primes S is said to be regular if there is a holomorphic function g(z) on Re(z) > 1

such that
∑

p∈S

1

pz
= δ(S) log

1

z − 1
+ g(z).

We need the following technical lemma (see [6], Lemma 2.1).

Lemma 1. Let S1 and S2 be two regular sets of primes such that δ(S1) = δ(S2).

Then the function
∑

p∈S1

p−z −
∑

q∈S1

q−z is analytic on Re(z) > 1.

The following proposition shows that the set of primes S is regular if it has a nat-

ural density that satisfies certain error term (see [6], Proposition 2.2).

Proposition 1. Let S ⊆ P be a set of primes that have natural density d(S).

Define E(x) = πS(x)/π(x) − d(S) to be the error function. Suppose that there are

α > 0, C > 0 and M > 0 such that for all x > M we have |E(x)| 6 Cx−α. Then S

is a regular set of primes.

3. The Chebotarev-Sato-Tate equidistribution

We recall now some properties of the Shimura lift (see [12]). The Fourier coeffi-

cients of f and Ft are related by the formula

(6) At(n) =
∑

d|n

χt,N (d)dk−1a
(n2

d2
t
)

,

where χt,N denotes the character χt,N (d) := χ(d)(−1)kN2t/d. Since f is the Hecke

eigenform for the Hecke operator Tp2 , Ft is an eigenform for the Hecke operator Tp,

for all primes p ∤ N . Further, we have Ft = a(t)F , where F is a normalised Hecke

eigenform independent of t.
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Applying the Ramanujan-Petersson bound to the Fourier coefficients of Ft,

|At(p)/a(t)| 6 2p(k−1)/2. Since Ft ∈ S2k(
1
2N,χ2), At(p) = χ2(p)At(p). There-

fore At(p)/χ(p) ∈ R and define

Bt(p) :=
At(p)

2a(t)p(k−1)/2χ(p)
∈ [−1, 1].

Notice that a(t) ∈ R since a(t) = At(1)/χ(1).

Recall that the Sato-Tate measure µ is the measure on the interval [−1, 1] given

by (2/π)
√
1− t2 dt. We state the important Sato-Tate equidistribution theorem

for Γ0(N) (see Theorem B of [3]).

Theorem 2 (Barnet-Lamb, Geraghty, Harris, Taylor). Let k > 1 and let Ft =
∑

n>1

A(n)qn ∈ S2k(
1
2N,χ2) be a cuspidal Hecke eigenform of weight 2k for Γ0(N).

Suppose that Ft is without multiplication. Denote by Imχ the image of χ and let

ξ ∈ Imχ. Then, when p runs through the primes p ∤ N such that χ(p) = ξ, the

numbers

B(p) =
At(p)

2a(t)p(k−1)/2χ(p)
∈ [−1, 1]

are µ-equidistributed in [−1, 1].

Inam et al. in [2], [6], [7] obtained the equidistribution of the coefficients a(tn2) by

using Theorem 2. In order to prove the geometric equidistribution on the plane as was

explained in the introduction, we need the following hybrid Chebotarev-Sato-Tate

equidistribution proved for elliptic curves in [11] for the first time, and it has been

generalized recently by Wong (see [13]) particularly to non-CM Hecke eigenforms.

Proposition 2 (Wong). Let q be a natural number and d an integer with

(d, q) = 1. Let [a, b] ⊂ [−1, 1] and put S[a,b] := {p prime : p ≡ d (mod q), Bt(p) ∈
[a, b]}. The set S[a,b] has natural density equal to (2/πϕ(q))

∫ b

a

√
1− t2 dt.

Using Dirichlet’s theorem on arithmetic progressions, this proposition could be

rewritten as follows.

Proposition 3. Let q be a natural number, ε (mod q) a Dirichlet character and ξ

a root of unity such that ξ ∈ Im ε. Let [a, b] ⊂ [−1, 1] and put S[a,b] := {p prime :
ε(p) = ξ, Bt(p) ∈ [a, b]}. The set S[a,b] has natural density equal to

1

# Im ε

2

π

∫ b

a

√

1− t2 dt,

where #Im ε is the cardinality of the image of ε.
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We will use frequently throughout the paper the following lemma (see [10]).

Lemma 2. Under the hypothesis fixed in the introduction, let n be an integer

such that (n,N) = 1. Then a(tn2)/χ(n) ∈ R.

4. Preliminaries results

We next show that the Chebotarev-Sato-Tate theorem (see [13], Proposition 2.2)

gives the equidistribution of the coefficients a(tp2) when primes p run over arithmetic

progressions.

Theorem 3. We use the assumptions fixed in the introduction and suppose

that Ft has no CM. Let q be a natural number, ε (mod q) a Dirichlet character

and ξ a root of unity such that ξ ∈ Im ε. Define the set of primes

Pε,ξ,> :=
{

p ∈ P : ε(p) = ξ,
a(tp2)

χ(p)
> 0
}

,

and similarly Pε,ξ, Pε,ξ,<, Pε,ξ,>, Pε,ξ,6, and Pε,ξ,=0. Let d be an integer such that

(d, q) = 1. Define also

Pd,q,> :=
{

p ∈ P : p ≡ d mod q,
a(tp2)

χ(p)
> 0
}

,

and similarly Pd,q, Pd,q,<, Pd,q,>, Pd,q,6, Pd,q,=0.

The sets Pd,q,>, Pd,q,<, Pd,q,>, Pd,q,6 have natural density 1/(2ϕ(q)) and Pd,q,=0

has natural density 0. Further, the sets Pε,ξ,>, Pε,ξ,<, Pε,ξ,>, Pε,ξ,6 have natural

density 1/(2# Im ε) and Pε,ξ,=0 has natural density 0, where #Im ε is the cardinality

of the image of ε.

P r o o f of Theorem 3. Define the sets

πd,q,>(x) := #
{

p 6 x : p ≡ d mod q,
a(tp2)

χ(p)
> 0
}

,

and similarly, πd,q(x), πd,q,<(x), πd,q,>(x), πd,q,6(x), and πd,q,=0(x). Without loss

of generality, we can assume that Ft is normalised and thus a(t) = 1. Denote the

character (−1)kN2t/· by χ1(·) = (−1)kN2t/·. The formula (6) yields

a(tp2)

χ(p)
> 0 ⇐⇒ Bt(p) >

χ1(p)

2
√
p
.
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Let ε > 0. Since for all p > 1/(4ε2) we have χ1(p)/(2
√
p) = 1/(2

√
p) < ε, then

(7) πd,q,>(x) + #
{

p 6 x prime : p ≡ d mod q, p 6
1

4ε2

}

> #{p 6 x prime : p ≡ d mod q, Bt(p) > ε}.

Applying Proposition 2 we get

lim
x→∞

#{p 6 x prime : p ≡ d mod q, Bt(p) > ε}
π(x)

=
µ([ε, 1])

ϕ(q)

and then

lim
x→∞

#{p 6 x prime : p ≡ d mod q, Bt(p) > ε}
πd,q(x)

= µ([ε, 1]).

It follows that lim inf
x→∞

πd,q,>(x)/πd,q(x) > µ([ε, 1]) for all ε > 0, hence

lim inf
x→∞

πd,q,>(x)

πd,q(x)
> µ([0, 1]) =

1

2
.

Similarly, we have

lim inf
x→∞

πd,q,6(x)

πd,q(x)
> µ([0, 1]) =

1

2
.

Since πd,q,6(x) = πd,q(x) − πd,q,>(x), then lim sup
x→∞

πd,q,>(x)/πd,q(x) =
1
2 . Using the

same method, we obtain the densities of Pd,q,<, Pd,q,> and Pd,q,6. Finally, since

πd,q,=0(x) = πd,q,>(x)− πd,q,>(x), then the density of Pd,q,=0(x) is zero.

The densities of the sets Pε,ξ,>, Pε,ξ,<, Pε,ξ,>, Pε,ξ,6 and Pε,ξ,=0 are obtained

similarly by using Proposition 3. �

The following theorem shows that the set of primes of Theorem 3 is regular if

the Chebotarev-Sato-Tate theorem satisfies certain error term. The proof is closely

similar to that of [6], Theorem 4.2.

Theorem 4. Under the assumptions of Theorem 3, suppose there are C > 0 and

α > 0 such that

∣

∣

∣

∣

∣

#{p 6 x prime : ε(p) = ξ, At(p)
2a(t)p(k−1)/2χ(p)

∈ [a, b]}
π(x)

− µ([a, b])

# Im ε

∣

∣

∣

∣

∣

6
C

xα
.

Then the sets Pε,ξ,>, Pε,ξ,6, Pε,ξ,>, Pε,ξ,< and Pε,ξ,=0 are regular sets of primes.
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Remark 1. Let ξq be a qth root of unity. The previous error term is weaker

than the one conjectured by Akiyama and Tanigawa (see [1]) and it can be obtained

by [13], Theorem 1.3 if GRH is assumed and also if L(z, Symm(Ft/a(t)) ⊗ η) is

automorphic over Q for every m and for all irreducible characters η of G(Q(ξq)/Q).

To proceed with the proof of Theorem 1, we establish the following two lemmas.

Lemma 3. Assume the assumptions fixed in the introduction and suppose that Ft

has no CM. Let q be a natural number. Suppose that for all ε (mod q) Dirichlet

characters and all roots of unity ξ such that ξ ∈ Im ε there are Cε,ξ > 0 and αε,ξ > 0

such that

(8)

∣

∣

∣

∣

∣

#{p 6 x prime : p ∤ N, ε(p) = ξ, At(p)
2a(t)p(k−1)/2χ(p)

∈ [a, b]}
π(x)

− µ([a, b])

# Im ε

∣

∣

∣

∣

∣

6
Cε,ξ

xαε,ξ
.

Suppose further that a(t) > 0. Define the multiplicative function for all n ∈ N,

f(n) =



































1 if
a(tn2)

χ(n)
> 0 and (n,N) = 1,

−1 if
a(tn2)

χ(n)
< 0 and (n,N) = 1,

0 if a(tn2) = 0 and (n,N) = 1,

0 if (n,N) 6= 1.

Let d be an integer with (d, q) = 1. Then the Dirichlet series

F (z) =
∑

n>1
n≡d mod q

f(n)

nz

is holomorphic on Re(z) > 1.

P r o o f of Lemma 3. We have

∑

n>1
n≡d mod q

f(n)

nz
=

1

ϕ(q)

∞
∑

n=1

f(n)

nz
×
(

∑

ε mod q

ε(n)ε(d)

)

=
1

ϕ(q)

∑

ε mod q

( ∞
∑

n=1

f(n)ε(n)

nz

)

× ε(d).

Since the first sum is finite, it suffices to show that Gε(z) =
∞
∑

n=1
f(n)ε(n)/nz is

holomorphic on Re(z) > 1.
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Since a(t) > 0 and for all m,n ∈ N, (m,N) = 1, (n,N) = 1,

a(tm2)

χ(m)

a(tn2)

χ(n)
= a(t)

a(tm2n2)

χ(mn)
,

then f(n) is multiplicative.

Applying [2], Lemma 2.1.2, we obtain

logGε(z) =
∑

p∈P

f(p)ε(p)

pz
+ g(z),

where g(z) is a function that is holomorphic on Re(z) > 1
2 . Hence

logGε(z) =
∑

p∈P

f(p)ε(p)

pz
+ g(z) =

∑

ξ∈Im(ε)

ξ
∑

p∈Pε,ξ

f(p)

pz
+ g(z)

=
∑

ξ∈Im(ε)

ξ

(

∑

p∈Pε,ξ,>

1

pz
−

∑

p∈Pε,ξ,<

1

pz

)

+ g(z).

The sets Pε,ξ,> and Pε,ξ,< are regular sets of primes, and they have the same density

1/(2# Im ε) by Theorem 3. Therefore by Lemma 1, log Gε(z) is holomorphic on

R(z) > 1, and consequently Gε(z) is also holomorphic. �

Lemma 4. We use the assumptions fixed in the introduction and suppose that Ft

has no CM. Let q be a natural number. Suppose that for all Dirichlet characters ε

(mod q) and all roots of unity ξ such that ξ ∈ Im ε there are Cε,ξ > 0 and αε,ξ > 0

such that

(9)

∣

∣

∣

∣

#{p 6 x prime : p ∤ N, ε(p) = ξ, At(p)

2a(t)p(k−1)/2χ(p)
∈ [a, b]}

π(x)
− µ([a, b])

# Im ε

∣

∣

∣

∣

6
Cε,ξ

xαε,ξ
.

Then for all integers d, (d, q) = 1, the set

{n ∈ N : (n,N) = 1, n ≡ d mod q, a(tn2) 6= 0}

has natural density.

P r o o f of Lemma 4. We have

∑

n>1
n≡d mod q

f(n)2

nz
=

1

ϕ(q)

∑

ε mod q

( ∞
∑

n=1

f(n)2ε(n)

nz

)

× ε(d).
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We shall define

Hε(z) =
∞
∑

n=1

f(n)2ε(n)

nz
.

Apply [2], Lemma 2.1.2 to get

logHε(z) :=
∑

p∈P

f(p)2ε(p)

pz
+ gε(z) =

∑

ξ∈Im ε

ξ
∑

p∈Pε,ξ,>∪Pε,ξ,<

1

pz
+ gε(z),

where gε(z) is a function that is holomorphic on Re(z) > 1
2 . Applying Theorem 4,

the sets Pε,ξ,> and Pε,ξ,< are regular sets of primes of natural density 1/(2# Im ε).

Then
∑

p∈Pε,ξ,>∪Pε,ξ,<

1

pz
=

1

# Im ε
log

1

z − 1
+ hξ(z),

where hξ is a holomorphic function on Re(z) > 1. It follows that

logHε(z) :=
∑

ξ∈Im ε

ξ
∑

p∈Pε,ξ,>∪Pε,ξ,<

1

pz
+ gε(z)

=

∑

ξ∈Im ε ξ

#Im ε
log

1

z − 1
+
∑

ξ∈Im ε

ξhξ(z) + gε(z).

Thus, logHε0(z) = log(z − 1)−1 + h1(z) + gε0(z), where ε0 is the principal Dirichlet

character modulo q, and logHε(z) =
∑

ξ∈Im ε

ξ hξ(z) + gε(z) when ε 6= ε0. From this

we see that in all cases, there is bε ∈ C satisfying

Hε(z) =
bε

z − 1
+ kε(z),

where kε is holomorphic on Re(z) > 1. Therefore

∑

n>1
n≡d mod q

f(n)2

nz
=

b

z − 1
+ k(z),

where b ∈ C and k is holomorphic on Re(z) > 1. We can now apply Wiener-Ikehara’s

theorem (see [9]) to deduce the result. �

Remark 2. Notice that the natural density of the set

{n ∈ N : (n,N) = 1, n ≡ d mod q, a(tn2) 6= 0}

is independent of the choice of d. Indeed, from Wiener-Ikehara’s theorem we know

that this density is equal to (h1(1) + gε0(1))/ϕ(q).
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5. Proof of Theorem 1

Before starting the proof, recall the theorem of Delange (see [5]).

Theorem 5. Let g : N → C be a multiplicative arithmetic function for which:

(1) for all n ∈ N, |g(n)| 6 1;

(2) there exists a ∈ C such that a 6= 1 and satisfying lim
x→∞

∑

p prime
p6x

g(p)/π(x) = a.

Then we have

lim
x→∞

∑

n6x

g(n)/x = 0.

We can now piece together the previous lemmas to prove Theorem 1.

P r o o f of Theorem 1. We have

(10)
∑

16n6x
n≡d mod q

f(n) =
1

ϕ(q)

∑

ε mod q

(

∑

16n6x

f(n)ε(n)

)

× ε(d).

For a Dirichlet character ε modulo q we have

lim
x→∞

∑

16p6x

f(p)ε(p)/π(x)

= lim
x→∞

∑

ξ∈Im ε

ξ
#{p 6 x : p ∈ Pε,ξ,>}

π(x)
− ξ

#{p 6 x : p ∈ Pε,ξ,<}
π(x)

= 0,

since Pε,ξ,> and Pε,ξ,< have the same natural density 1/(2# Im ε). Applying De-

lange’s theorem, we get lim
x→∞

∑

16n6x

f(n)ε(n)/x = 0, and consequently,

lim
x→∞

∑

16n6x
n≡d mod q

f(n)/x = 0.

From this we have

(11) lim
x→∞

#{n 6 x : (n,N) = 1, n ≡ d mod q, a(tn2)/χ(n) > 0}
x

− #{n 6 x : (n,N) = 1, n ≡ d mod q, a(tn2)/χ(n) < 0}
x

= 0.

By Lemma 4, there is b > 0 such that

(12) lim
x→∞

#{n 6 x : (n,N) = 1, n ≡ d mod q, a(tn2)/χ(n) > 0}
x

+
#{n 6 x : (n,N) = 1, n ≡ d mod q, a(tn2)/χ(n) < 0}

x
= b.

The result follows from (11) and (12). �
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We show finally by another method how the natural density of the set defined in

Lemma 4 is independent of d.

Proposition 4. Under the assumptions of Theorem 1, the natural density of the

set

{n ∈ N : (n,N) = 1, n ≡ d mod q, a(tn2) 6= 0}
is equal to

1

ϕ(q)
lim

z→1+
(z − 1)

∞
∑

n=1
(n,q)=1

f(n)2

nz
.

P r o o f of Proposition 4. Since {n ∈ N : (n,N) = 1, n ≡ d mod q, a(tn2) 6= 0}
has natural density by Lemma 4, it suffices to prove that the Dedekind-Dirichlet

density of this set is equal to

1

ϕ(q)
lim

z→1+
(z − 1)

∑

n=1
(n,q)=1∞

f(n)2

nz
.

We shall define

B(z) =
∑

n=1
n≡d mod q∞

f(n)2

nz

and

Cε(z) =

∞
∑

n=1

f(n)2ε(n)

nz
,

where ε runs over Dirichlet characters modulo q.

We must now compute lim
z→1+

(z − 1)B(z). By the same computations as in the

previous theorem, it suffices to compute lim
z→1+

(z − 1)Cε(z). We have

Cε(z)

L(z, ε)
=
∏

p∈P

∞
∑

k=0

f(pk)2ε(pk)p−kz ×
∏

p∈P

(

1− ε(p)

pz

)

=
∏

p∈P

(

1− ε(p)

pz

)

×
∏

p∈P

(

1 +

∞
∑

k=1
a(tp2k) 6=0

ε(pk)

pkz

)

=
∏

p∈P
a(tp2) 6=0

[

(

1− ε(p)

pz

)

(

1 +
ε(p)

pz
+

∞
∑

k=2
a(tp2k) 6=0

ε(pk)

pkz

)]

×
∏

p∈P
a(tp2)=0

[

(

1− ε(p)

pz

)

(

1 +

∞
∑

k=2
a(tp2k) 6=0

ε(pk)

pkz

)]
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=
∏

p∈P
a(tp2) 6=0

(

1− ε(p2)

p2z
+ h1(z, p)

)

×
∏

p∈P
a(tp2)=0

(

1− ε(p)

pz
+ h2(z, p)

)

,

where h1(z, p) and h2(z, p) are the remaining terms. Apply logarithm to the ratio

Cε(z)/L(z, ε) and notice that

∑

p∈P
a(tp2) 6=0

log
(

1− ε(p2)

p2z
+ h1(z, p)

)

is holomorphic on Re(z) > 1. On the other hand, we have

∑

p∈P
a(tp2)=0

log
(

1− ε(p)

pz
+ h2(z, p)

)

=
∑

p∈P
a(tp2)=0

ε(p)

pz
+ h3(z, p),

where h3(z, p) is holomorphic on Re(z) > 1. Further, since for all roots of unity ξ

such that ξ ∈ Im ε, the set Pε,ξ,=0 is a regular set of primes of density 0 by Theorem 3,

then
∑

p∈P
a(tp2)=0

ε(p)

pz
=
∑

ξ∈Im ε

ξ
∑

p∈Pε,ξ,=0

1

pz

is also holomorphic on Re(z) > 1. Thus logCε(z)/L(z, ε) is holomorphic on

Re(z) > 1 and by taking exponential we see that Cε(z)/L(z, ε) is also holomor-

phic on Re(z) > 1. Then the limit lim
z→1+

(z−1)Cε0(z) exists, where ε0 is the principal

character modulo q, and lim
z→1+

(z − 1)Cε(z) = 0 when ε 6= ε0,

lim
z→1+

(z − 1)B(z) =
1

ϕ(q)
lim

z→1+
(z − 1)Cε0(z) =

1

ϕ(q)
lim

z→1+
(z − 1)

∑

n=1
(n,q)=1∞

f(n)2

nz
.

�

We conclude with some related remarks.

Remark 3. When q = N or (q,N) = 1, the Dedekind-Dirichlet density of the

set {n ∈ N : (n,N) = 1, n ≡ d mod q, a(tn2) = 0} exists. Indeed, we have

lim
z→1+

(z − 1)
∑

n>1
n≡d mod q

1

nz
=

1

q
.
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By Lemma 3, it follows that

(13) lim
z→1+

(z − 1)

(

2
∑

(n,N)=1

a(tn2)/χ(n)>0
n≡d mod q

1

nz
+

∑

(n,N)=1

a(tn2)=0
n≡d mod q

1

nz
+

∑

(n,N) 6=1
n≡d mod q

1

nz

)

=
1

q
.

Let χ0 be a principal character modulo N . We have

∑

(n,N)=1
n≡d mod q

1

nz
=

∑

n≡d mod q

χ0(n)

nz
=

1

ϕ(q)

∑

n>0

χ0(n)

nz

∑

ε mod q

ε(d)ε(n)

=
1

ϕ(q)

∑

ε mod q

ε(d)
∑

n>0

χ0(n)ε(n)

nz
.

Following our hypothesis, if q = N , we consider χ0ε as a character modulo N , if

(q,N) = 1, we consider it as a character modulo qN . Therefore

lim
z→1+

∑

(n,N)=1
n≡d mod q

1

nz

exists and thus

lim
z→1+

∑

(n,N) 6=1
n≡d mod q

1

nz

also exists. Replace this in (13) and the result follows.

Remark 4. A weaker version of Theorem 1 could be obtained using Proposi-

tion 4. Indeed, in the proof of the previous proposition there is b > 0 such that

lim
z→1+

(z − 1)B(z) = b. Hence {n ∈ N : (n,N) = 1, n ≡ d mod q and a(tn2) 6= 0} has
a Dedekind-Dirichlet density equal to b. It follows from (13) that

lim
z→1+

(z − 1)

(

∑

(n,N)=1
n≡d mod q
a(tn2)=0

1

nz
+

∑

(n,N) 6=1
n≡d mod q

1

nz

)

=
1

q
− b.

Replace this in (13) to get

lim
z→1+

(z − 1)
∑

(n,N)=1
n≡d mod q

a(tn2)/χ(n)>0

1

nz
=

b

2
.

The equidistribution obtained here is in terms of the Dedekind-Dirichlet density only.
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