[5] Barrios, T. P., Bustinza, R., García, G. C., Hernández, E.:
On stabilized mixed methods for generalized Stokes problem based on the velocity-pseudostress formulation: A priori error estimates. Comput. Methods Appl. Mech. Eng. 237-240 (2012), 78-87.
DOI 10.1016/j.cma.2012.05.006 |
MR 2942835 |
Zbl 1253.76053
[14] Deng, Q., Feng, X.:
Multigrid methods for the generalized Stokes equations based on mixed finite element methods. J. Comput. Math. 20 (2002), 129-152.
MR 1884415 |
Zbl 0998.65123
[15] Duan, H.-Y., Hsieh, P.-W., Tan, R. C. E., Yang, S.-Y.:
Analysis of the small viscosity and large reaction coefficient in the computation of the generalized Stokes problem by a novel stabilized finite element method. Comput. Methods Appl. Mech. Eng. 271 (2014), 23-47.
DOI 10.1016/j.cma.2013.11.024 |
MR 3162662 |
Zbl 1296.76081
[18] Huang, P., Zhang, Q.:
A posteriori error estimates for the Stokes eigenvalue problem based on a recovery type estimator. Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., Nouv. Sér. 62 (2019), 295-304.
MR 4022421
[27] Verfürth, R.:
A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner Series Advances in Numerical Mathematics, Wiley, Chichester; Teubner, Stuttgart (1996).
Zbl 0853.65108
[28] Wang, Z., Chen, Z., Li, J.:
A stabilized nonconforming quadrilateral finite element method for the generalized Stokes equations. Int. J. Numer. Anal. Model. 9 (2012), 449-457.
MR 2926523 |
Zbl 1277.76020
[29] Wang, J., Wang, Y., Ye, X.:
A posteriori error estimate for stabilized finite element methods for the Stokes equations. Int. J. Numer. Anal. Model. 9 (2012), 1-16.
MR 2871298 |
Zbl 06165588
[30] Zheng, H., Hou, Y., Shi, F.:
A posteriori error estimates of stabilization of low-order mixed finite elements for incompressible flow. SIAM J. Sci. Comput. 32 (2010), 1346-1360.
DOI 10.1137/090771508 |
MR 2652081 |
Zbl 1410.76206