Previous |  Up |  Next

Article

Keywords:
generalized Stokes problem; recovery-based error estimator; adaptive method; finite element method
Summary:
A recovery-based a posteriori error estimator for the generalized Stokes problem is established based on the stabilized $P_1-P_0$ (linear/constant) finite element method. The reliability and efficiency of the error estimator are shown. Through theoretical analysis and numerical tests, it is revealed that the estimator is useful and efficient for the generalized Stokes problem.
References:
[1] Araya, R., Barrenechea, G. R., Poza, A.: An adaptive stabilized finite element method for the generalized Stokes problem. J. Comput. Appl. Math. 214 (2008), 457-479. DOI 10.1016/j.cam.2007.03.011 | MR 2398346 | Zbl 1132.76028
[2] Babuška, I., Rheinboldt, W. C.: A-posteriori error estimates for the finite element method. Int. J. Numer. Methods Eng. 12 (1978), 1597-1615. DOI 10.1002/nme.1620121010 | MR 0488846 | Zbl 0396.65068
[3] Bank, R. E., Welfert, B. D.: A comparison between the mini-element and the Petrov-Galerkin formulations for the generalized Stokes problem. Comput. Methods Appl. Mech. Eng. 83 (1990), 61-68. DOI 10.1016/0045-7825(90)90124-5 | MR 1078695 | Zbl 0732.65100
[4] Barrenechea, G. R., Valentin, F.: An unusual stabilized finite element method for a generalized Stokes problem. Numer. Math. 92 (2002), 653-677. DOI 10.1007/s002110100371 | MR 1935805 | Zbl 1019.65087
[5] Barrios, T. P., Bustinza, R., García, G. C., Hernández, E.: On stabilized mixed methods for generalized Stokes problem based on the velocity-pseudostress formulation: A priori error estimates. Comput. Methods Appl. Mech. Eng. 237-240 (2012), 78-87. DOI 10.1016/j.cma.2012.05.006 | MR 2942835 | Zbl 1253.76053
[6] Bernardi, C., Verfürth, R.: Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85 (2000), 579-608. DOI 10.1007/s002110000135 | MR 1771781 | Zbl 0962.65096
[7] Bochev, P. B., Dohrmann, C. R., Gunzburger, M. D.: Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal. 44 (2006), 82-101. DOI 10.1137/S0036142905444482 | MR 2217373 | Zbl 1145.76015
[8] Burman, E., Hansbo, P.: Edge stabilization for the generalized Stokes problem: A continuous interior penalty method. Comput. Methods Appl. Mech. Eng. 195 (2006), 2393-2410. DOI 10.1016/j.cma.2005.05.009 | MR 2207476 | Zbl 1125.76038
[9] Bustinza, R., Gatica, G. N., González, M.: A mixed finite element method for the generalized Stokes problem. Int. J. Numer. Methods Fluids 49 (2005), 877-903. DOI 10.1002/fld.1029 | MR 2173758 | Zbl 1077.76038
[10] Carstensen, C.: Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis. ZAMM, Z. Angew. Math. Mech. 84 (2004), 3-21. DOI 10.1002/zamm.200410101 | MR 2031241 | Zbl 1073.65120
[11] Carstensen, C., Funken, S. A.: A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems. Math. Comput. 70 (2001), 1353-1381. DOI 10.1090/S0025-5718-00-01264-3 | MR 1836908 | Zbl 1014.76042
[12] Carstensen, C., Verfürth, R.: Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal. 36 (1999), 1571-1587. DOI 10.1137/S003614299732334X | MR 1706735 | Zbl 0938.65124
[13] Chou, S. H.: Analysis and convergence of a covolume method for the generalized Stokes problem. Math. Comput. 66 (1997), 85-104. DOI 10.1090/S0025-5718-97-00792-8 | MR 1372003 | Zbl 0854.65091
[14] Deng, Q., Feng, X.: Multigrid methods for the generalized Stokes equations based on mixed finite element methods. J. Comput. Math. 20 (2002), 129-152. MR 1884415 | Zbl 0998.65123
[15] Duan, H.-Y., Hsieh, P.-W., Tan, R. C. E., Yang, S.-Y.: Analysis of the small viscosity and large reaction coefficient in the computation of the generalized Stokes problem by a novel stabilized finite element method. Comput. Methods Appl. Mech. Eng. 271 (2014), 23-47. DOI 10.1016/j.cma.2013.11.024 | MR 3162662 | Zbl 1296.76081
[16] Duarte, C. A., Oden, J. T.: An $h$-$p$ adaptive method using clouds. Comput. Methods Appl. Mech. Eng. 139 (1996), 237-262. DOI 10.1016/S0045-7825(96)01085-7 | MR 1426011 | Zbl 0918.73328
[17] He, Y., Xie, C., Zheng, H.: A posteriori error estimate for stabilized low-order mixed FEM for the Stokes equations. Adv. Appl. Math. Mech. 2 (2010), 798-809. DOI 10.4208/aamm.09-m0995 | MR 2719057 | Zbl 1262.65158
[18] Huang, P., Zhang, Q.: A posteriori error estimates for the Stokes eigenvalue problem based on a recovery type estimator. Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., Nouv. Sér. 62 (2019), 295-304. MR 4022421
[19] Kay, D., Silvester, D.: A posteriori error estimation for stabilized mixed approximations of the Stokes equations. SIAM J. Sci. Comput. 21 (1999), 1321-1336. DOI 10.1137/S1064827598333715 | MR 1740398 | Zbl 0956.65100
[20] Larin, M., Reusken, A.: A comparative study of efficient iterative solvers for generalized Stokes equations. Numer. Linear Algebra Appl. 15 (2008), 13-34. DOI 10.1002/nla.561 | MR 2388412 | Zbl 1212.65493
[21] Nafa, K., Wathen, A. J.: Local projection stabilized Galerkin approximations for the generalized Stokes problem. Comput. Methods Appl. Mech. Eng. 198 (2009), 877-883. DOI 10.1016/j.cma.2008.10.017 | MR 2498529 | Zbl 1229.76054
[22] Repin, S., Stenberg, R.: A posteriori error estimates for the generalized Stokes problem. J. Math. Sci., New York 142 (2007), 1828-1843 translation from Probl. Mat. Anal. 34 2006 89-101. DOI 10.1007/s10958-007-0092-7 | MR 2331642 | Zbl 1202.65150
[23] Rodríguez, R.: Some remarks on Zienkiewicz-Zhu estimator. Numer. Methods Partial Differ. Equations 10 (1994), 625-635. DOI 10.1002/num.1690100509 | MR 1290948 | Zbl 0806.73069
[24] Song, L., Hou, Y., Cai, Z.: Recovery-based error estimator for stabilized finite element methods for the Stokes equation. Comput. Methods Appl. Mech. Eng. 272 (2014), 1-16. DOI 10.1016/j.cma.2014.01.004 | MR 3171270 | Zbl 1296.76087
[25] Verfürth, R.: A posteriori error estimators for the Stokes equations. Numer. Math. 55 (1989), 309-325. DOI 10.1007/BF01390056 | MR 0993474 | Zbl 0674.65092
[26] Verfürth, R.: A posteriori error estimates for nonlinear problems: Finite element discretizations of elliptic equations. Math. Comput. 62 (1994), 445-475. DOI 10.2307/2153518 | MR 1213837 | Zbl 0799.65112
[27] Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner Series Advances in Numerical Mathematics, Wiley, Chichester; Teubner, Stuttgart (1996). Zbl 0853.65108
[28] Wang, Z., Chen, Z., Li, J.: A stabilized nonconforming quadrilateral finite element method for the generalized Stokes equations. Int. J. Numer. Anal. Model. 9 (2012), 449-457. MR 2926523 | Zbl 1277.76020
[29] Wang, J., Wang, Y., Ye, X.: A posteriori error estimate for stabilized finite element methods for the Stokes equations. Int. J. Numer. Anal. Model. 9 (2012), 1-16. MR 2871298 | Zbl 06165588
[30] Zheng, H., Hou, Y., Shi, F.: A posteriori error estimates of stabilization of low-order mixed finite elements for incompressible flow. SIAM J. Sci. Comput. 32 (2010), 1346-1360. DOI 10.1137/090771508 | MR 2652081 | Zbl 1410.76206
[31] Zienkiewicz, O. C., Zhu, J. Z.: The superconvergent patch recovery and a posteriori error estimates. I: The recovery technique. Int. J. Numer. Methods Eng. 33 (1992), 1331-1364. DOI 10.1002/nme.1620330702 | MR 1161557 | Zbl 0769.73084
[32] Zienkiewicz, O. C., Zhu, J. Z.: Superconvergence and the superconvergent patch recovery. Finite Elem. Anal. Des. 19 (1995), 11-23. DOI 10.1016/0168-874X(94)00054-J | Zbl 0875.73292
Partner of
EuDML logo