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Abstract. A recovery-based a posteriori error estimator for the generalized Stokes problem
is established based on the stabilized P; — Py (linear/constant) finite element method. The
reliability and efficiency of the error estimator are shown. Through theoretical analysis and
numerical tests, it is revealed that the estimator is useful and efficient for the generalized
Stokes problem.
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1. INTRODUCTION

Let 2 be a bounded and polygonal domain with Lipschitz continuous boundary 92.
We consider the generalized Stokes problem (GSP) as follows: Find (u,p) such that

ou—vAu+Vp=f inQ,

(1.1) divu =0 in Q,
u=20 on 0,
where v = u(z) = (uj(x),uz(x))" denotes the velocity vector, p = p(z) is the

pressure, f = f(x) = (f1(x), f2(x))" is a given source-like function, and v and o > 1
represent the coefficient of viscosity and reaction, respectively. The GSP can be
seen as a vital substep of an unsteady equation or other non-linear equations, such
as non-Newtonian flows, Navier-Stokes equations, convection-dominated convection-
diffusion problems and so on.
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At the time of writing, there are numerous works devoted to the development
of efficient methods for the GSP, such as finite element method, finite difference
method, radial basis function, spectral method and so on. Bustinza et al. have
studied a low-order mixed finite element for this problem [9]. A local stabilized
nonconforming finite element method for the GSP was proposed by Wang et al. [28].
Larin and Reusken compare a coupled multigrid method with Braess-Sarazin and
Vanka-type smothers [20]. Deng and Feng [14] develop and analyze the multi-
grid methods based on mixed element methods for the generalized Stokes equa-
tions. An unusual stabilized finite method is presented and analyzed for GSP
with a dominating zeroth order term by Barrenechea and Valentin [4]. Bank and
Welfert show a comparison between the mini-element and Petrov-Galerkin for-
mulations [3]. A covolume or MAC-like method is introduced for approximating
the GSP by Chou [13]. Burman and Hansbo use a continuous interior penalty
method to research edge stabilization of GSP in [8]. Alternatively, Nafa and Wa-
then analyze pressure stabilized finite element methods for solving the solution of
the GSP and investigate their stability and convergence properties [21]. An aug-
mented mixed formulation is applied to GSP which is obtained adding suitable
least squares terms to the corresponding velocity-pseudostress formulation of the
GSP [5].

Nowadays, it is very popular to apply adaptive methods to save computer time
and it has been proved that it is useful and efficient in scientific computing [2], [16],
[17], [26], [29], [18]. A posteriori error estimate for the P, — Py stabilized finite
element methods has been studied by Kay and Silverste [19]. Two a posteriori
error estimators for the mini-element discretization of Stokes equations have been
presented by Verfiirth [25], involving the residual estimator. For the considered
problem based on residual a posteriori error estimator, Repin and Stenberg have
derived estimates by transforming the basic integral identity defining a generalized
solution to GSP and proved a posteriori estimates for the velocity field based on
the difference between exact and approximate pressure function in the L2-norm [22].
Besides, Araya et al. have presented an adaptive strategy (based on an a posteriori
error estimator) for a stabilized finite element method [1].

As for the recovery-based a posteriori error estimator, it was first introduced by
Zienkiewicz and Zhu [31], [32]. Further, the recovery-based error estimator is ana-
lyzed for the Poisson equation based on the lowest order finite element approxima-
tion by Rodriguez [23] and Carstensen [10]. For the Stokes equations, Carstensen
and Funken have shown the recovery-based a posteriori error estimator for the non-
conforming finite element approximation [11]. Moreover, Song et al. [24] propose
a recovery-based error estimator for the stabilized P, — Py finite element approx-
imations, and apply the so-called projection stabilized method [30], i.e., add the
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difference of the numerical pressure and its projection onto the continuous piecewise
linear finite element space.

In this paper we will present a posteriori error analysis of a stabilized method
for the GSP with a recovery-based estimator, and through theoretical analysis and
numerical experiments we will see that the estimator is useful and efficient for the
GSP. The present paper is organized as follows. In Section 2, we introduce a stabi-
lized finite element method for the GSP. In Section 3, we propose a recovery-based
estimator and analyze its reliability and efficiency. In the last section, we numerically
confirm the theoretical results.

2. STABILIZED P, — P, FINITE ELEMENT APPROXIMATION

In this section, we need to introduce the following Hilbert spaces to establish the
weak form:

X = H}(Q)?, M:L%(Q):{qeLQ(Q): /qua:=0}.

Next, let B((u,p),(v,q)) = o(u,v) + v(Vu,Vv) — (p,dive) + (¢,divu) and
f)=(f,v). Then a weak solution of system (1.1) can be defined as follows:
Find (u,p) € X x M such that

(2'1) B((u,p), (UaQ)) = f(U) v(an) € X x M.

It is easy to verify that the bilinear form B((:,-), (-, -)) satisfies the inf-sup condition
which ensures the uniqueness of (2.1), i.e., for all (v, q) € X x M there exists a positive
constant 1 such that [28]

inf B((u,p), (v,q))

su > B,
(up)EX XM (y yex xm (D) (v, @)l

where the energy norm |||| is defined by ||(v,q)| = (|[v||3 + Hq|\2)1/2.

Further, let 7, = {T'} be a triangulation of the domain  with the mesh parameter
h = %ngf{diam(T)}. Assume the triangulation 7, is regular; i.e., the ratio hp/or is
bounded by a constant C' which is independent of h. Here, hp denotes the longest
edge of T' and o7 the diameter of the largest circle inscribed in 7.
Let Ry be the space consisting of continuous functions which are linear on each
triangle, i.e.,
Ry ={v, € C°(Q): wplr € PU(T)VT €1},
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where P;(T) is the space of linear polynomials on the element 7'. Besides, we need
the piecewise constant finite element space

Ro = {qn € L*(Q): qnlr € Po(T) VT € 1.},

where Py(T) are the constant polynomials on the element T'.
In this paper, we will apply the stabilized mixed method for solving the GSP based
on the lowest conforming pair
X, =XNR2,
and

M;, = M N Ry.

It is known that the lowest conforming pair does not satisfy the inf-sup condition,
therefore some stabilized mixed methods are used for the lowest conforming pair.
This paper is focused on the projection stabilized method in [7], which does not
require side based data structures and is parameter free. The stabilization term is
given by

S(pnyan) = (pr — Upn,qn — gn) Vpn,qn € Mp,
where II is defined by II: L?(Q2) — R; and has the following properties [7], [24]:

Clllpnlells, < llpn —pr|l < Cll[palells,  Vpn € Ro,
lpn — Hpn|l < Cllpnll  Vpu € Ro.

Here S}, denotes the set of all interior sides in {2, e € S, is an edge and the norm is

1/2
lolls, = (Z he|v||i) |

ecSh

Besides, for any piecewise constant p, let [p]. = p|Te+ — p|Te_ denote its jump on the
side e, where T," and T, are triangles sharing the common side e.

Furthermore, the stabilized finite element scheme seeks (up,prn) € Xp x M} such
that

(2.2) {”(“h’ v) + v(Vup, Vo) — (py, dive) = f(v) Vv € Xy,

(¢,divu) + S(pn,q) =0 Vg€ M.
According to [7], there exist a positive constant 2 such that

JorrV - vp dz
sup -

up ol = Ballpnll = Clllpnlells, Vpn € Mp.
Vh h
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3. THE RECOVERY-BASED ERROR ESTIMATOR

Let
0 =AVu —pl,

and let its numerical approximation be
6h = )\Vuh - phI.

Here (uy, pp) is the approximation solution of (2.2), I denotes the (2 x 2)-identity
matrix, and A is a positive parameter. We remark that the parameter A plays an
important role in calculation and influences the effectiveness of the recovery-based
estimator. Besides, when A = 1, it becomes the one shown in [24].

Denote by N the vertices in 75, N, the vertices of the side e and N, the vertices
in 7, lying inside €. For any given z € N, ¢, is the basis functions of z and the set
W, = supp ., the union of all triangles sharing the same node z. Similarly to the
method in [24], as a recovery technique, we need to construct G(d) based on 5, such
that G(d) approximates d better than J5 in some norm. Namely, G(d;,) satisfies

16 — G(6n)l
—_—— 1,
16— onll
thus,
15— Gl
16— onl|
The formulation of G actually can be written as
f 5h dx
1) =
Gone) = P

Now, our recovery-based error estimator is constructed locally as
nr = ||6n — G(on)]|1,

and the global one can be defined as
1/2
= (X ) -
TeTh

For any piecewise constant tensor d, let [0 ne| := 6|+ - 1e — 6|~ - 1 Tepresent the
jump of the normal component of § on the edge e € S}, where n, is the unit vector
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and is orthogonal to e; [0 - t¢] := 6|T€+ “te — 0|y~ - te represent the jump of the unit
tangential vector ¢, of § on the edge e. Next, we will give reliability and efficiency
of the recovery-based error estimator. First, we need the following lemmas.

Lemma 3.1. There exist two mesh-size-independent positive constants C; and Co
such that

Ci([lon - ne]|

sn) < N|0n = G(on)| < Co([[[0n - ne]l

s, + lpnlel si + lprlells,,)-

Proof. First, we have

(3.1) C1||[0n]el

sn < N10n = G(dn)]l < Call[dn]e]

Sh+

We refer to Lemma 3.1 in [24] for its proof. Since [Vuy, - te] = 0, we have
[5h]e = [5h : ne]ne + [5h : [fe][fe = [5h 'ne]ne + [_phI' Le][fe-

Therefore, ||[6n]cl|? = ||[0n - ne]l|? + ||[pr)el?>. Then together with (3.1), it admits
lprlells, < ll[6rlells, < Cn, and this proves the left inequality of Lemma 3.1. For
the right part,

(32) [[6nells, < CUIOn - nells, + lllpalells,)-
Thus, the proof of Lemma 3.1 is complete. O

Lemma 3.2 ([12], [24]). There is a positive constant C' such that
1/2
{ > Jhel o - thHg} <Clvlp Vv e X,
e€Sy

where Q: L'(Q)? — X}, is a weighted Clément-type interpolation operator.
Lemma 3.3 ([12], [24]). There is a positive constant C' such that
flv—Qnrv) < CHy|v|1 YveX,

where H2 = Y |wil|fI2. + X |w.lllf — [, fda/ [, 1da]2_. If f € L2(Q)2,
zEN/N), zEN,

then the second term in Hy is a higher-order term. Besides, the first term is also
a higher-order term for f € LP(Q)%, p > 2.
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Lemma 3.4. For the projection stabilization term in (2.2), we have

(¢, V - un) < Cnlgl-

Proof. Choosing ¢ = V - uy, in the second equation of (2.2) and using the prop-
erties of II and the Schwarz inequality, we have

IV - up||® = =S(pn, V - up) = —(pr — Upp, V - up, — I(V - up))
< lpn = Upnl[|V - up = (V- up)[| < Cll[palells, IV - unll < Cnl|V - up .

So, we arrive at
(¢, V- un) < IV - unllllqll < Cnllgl-
O

Theorem 3.1 (Reliability). There exists a positive constant C' independent of
the mesh size such that

I = un,p = pu)ll < CBT (Hy + ).

Proof. Choosing v = Qv and ¢ =0 in (2.2) gives
B((u —up,p —pn), (Qrv,0)) =0 Vve X,
Noticing that if we only take ¢ = 0 in (2.2), the term
o(u—up,v) = —v(V(u—up), Vv) + (p — pn, V - v)

in the following can be replaced. Since V - 4|7 = 0, by using integration by parts,
we get

B((u —un,p — pn), (v,9)) = B((u — up, p — pr), (v — Qnv,q))
=o(u—up,v— Qpv) + %(/\V(u —up), V(v — Qpv))

- %(p—ph,v (v = Qnv))

~(1=2) 0 =P V- (0= Quo) + (0. V- (u =)
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=o(u—up,v — Qpv) + %((5,V(v —Qpv)) + ; Z (V- 6p,v — Qupu)r

TETH

S o - @)~ (1= 5) 0 - V- (0 - @uo)) — 0,V )

A
e€Sy
= (£.0 = Quv) = ol v = Qo)+ (1= 5) D ([plesv = Quo)e = (0, V - us)

ecSh

=5 2 (- mele.v = @no)e

ecSh

< C<(f,v —Qpv) + (1 - %) Z ([prlesv — Qnv)e

ecSh

v
RSN Z ([6n - nele, v = Quv)e + (Q7V'uh)> =hL+L+13+ 1.
e€Sy

Moreover, by Lemma 3.3, it is easy to find that
I < CHylvl|1.

Further, for I, using the Schwarz inequality and Lemmas 3.2 and 3.1, we have

1/2 y
so( X ntlo-ue2) < o(i-5)alol

e€Sy

v
1< (1= %) ple
Based on Lemmas 3.4, 3.1, and 3.2, we have

1/2
1% 14
< O3l nllls, (3 o - Quoll2) < el
e€Sh
Iy < Cllq]-

Hence, from the above estimates, we deduce that
L+ 1+ I3+ 1o < C(Hy +n) (lvlls + lal)-

Finally, we get

B — _
Nu—unp—pl <B7°  sup DUEZ WP =P (0:9))
ol I 9l

< OBy (Hy + ).
This completes the proof of reliability.
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We now give a result about efficiency. From Lemma 3.1, we have

1 < C([|[0n - mele|

Sy t+ ”[ph]el S;L)'

In the sequel we will give the estimation of the terms ||[dp, - 1]

s, and ”[ph]el Sh+

According to [6], with every element T and every interior edge e we associate
the element bubble function &7 = 27ll,cn,¢. and the edge bubble function
U, =4Il,en, ., respectively. The following estimates are proved in Lemma 3.3
of [27]:

For an arbitrary polynomial ¢, one has

(3.3) lgllr < Cley %ql|r,
(3.4) IV (q®7)|l7 < Chy'llgl|r,
(3.5) lqlle < Cllw?q]le,
(3.6) IV(q@e)|lr < ChZ?|glle,

(3.7) lq@ellr < ChY2||q]..

Lemma 3.5. Let (u,p) and (up,pp) be the solutions of (2.1) and (2.2), respec-
tively. Then there exists a positive constant C independent of the mesh such that

Ifn+ V-0 — ouplly < C(hp' 16 = Sullr + | fn = Fllz + ollu — unll7),

where fy, is an approximation of f from the finite element space Xp,.

Proof. Set (v = ®r(fn +V - 0p — oup). Using (3.3), (3.4), the Cauchy-Schwarz
inequality, and integration by parts gives

[ fn+ V-6 — ounl7 < C/(fh +V -8, — oup)(rdz
T

SC/T(fh—f)CTd:c—i—/T((S—5h)V§de+/TU(u—uh)§de

< C(hy' 16 = bnllr + I1fu — fllr + ollu — unll) | fr + V - 61 — ounl|r,

and we arrive at the result. O

Lemma 3.6. Under the same assumption as in Lemma 3.5, we have

{65 - ne]|

sn S OIS = fall + llu = unll + 116 = nl])-
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Proof. Set 6. = U.[d - ne]. Then, utilizing the properties of (3.5), (3.6), (3.7),
Lemma 3.5, the Cauchy-Schwarz inequality, and integration by parts, we obtain

{65 - ne]| C/(Sh nelfe dz < (JZ(/ f=ou)be — (86 — 6,) V0, da:)

—CZ(/ (f—fh+fh—auh+auh—au)96—(6—6h)veedx)
i=1 T

< CRY2(f = fallo. + 1 fn + V- 65 — oun|
+ Ch 216 = Snlw. [6n - ne] e
S CRYPf = fullw. +ollu = wnllw,) + ho 2116 = 0nllw) | [6h - ne] -

we T 0llu = unllo)l[0n - nellle

Immediately,

16n - nells, = > h210n - nell < CQIF = full + hllu = unll + 116 = 6nl))-
ecSy

For the term ||[pp]e|

s, , the estimate is the same as in Lemmas 3.4 and 3.5 in [24]
and we have

(3.8) I[pnlel

sn < Cll(w = un,p—pa)ll

O

Theorem 3.2 (Efficiency). Let (u,p) and (un,pn) be the solutions of (2.1)
and (2.2), respectively. There exists a positive constant C' independent of the mesh
size such that

<|||(u—uh,p pll+ Al = uall + Y e nt [ - fhnwe)

e€Sy

Proof. Using Lemmas 3.5, 3.6 and (3.8), we get
1< CAIBL - nelels, + piels,)
<18l + X h int 17 = fulle+ Bl =l + 1w = wp = )

e€Sy ne

< (1= wnop =l Bl wnl + 3 b inf 17~ fll )

ecSh ne

32



4. NUMERICAL EXPERIMENTS

In this section, we focus on the performance of the recovery-based estimator de-
scribed in former sections. First we introduce the strategy of refinement of the mesh.
Note that the mesh is updated by adding some new nodes and the mesh modification
requires the regularity of the mesh.

Step 1. Calculate the initial numerical solution in the initial mesh h;.

Step 2. For every element, calculate the local error estimator 77, and then compute
the average 77 = Y nr/>_ 1 in all the elements of the presented mesh.

T T

Step 3. Define the intermediate function g = min(max(nr/(c7), 1.0),3.0), com-
monly the constant 0 < ¢ < 1. Use the intermediate function g to update the size of
mesh

iy = h;/9(m),
and then get a new mesh and return to step 1 unless j < M (M is the number of
refinement).

For convenience, we need the following notions.

v

Dof; is the number of the triangles for the triangulation with the mesh size h;;
el=|(u—ul,p—p))|l/l(u,p)| is the relative error in the energy norm;

v

log(e/ ™) —log(e])

=2
Order; log(Dof; /Dofj41)

is the convergence rate of the error e;

> nl =n/[|(Au,p)| is the relative value of n;
>
1 J+1) _ J
Order, — 22801 ") — log(ny)
10g(Dij/Dij+1)

is the convergence rate of ni;
> E =nl/el is the effective index of the recovery-based estimator 7.

4.1. Analytical solution on square domain. For the first example, we use as
domain the square 2 = (0,1) x (0,1) and set f to be such that the exact solution of
our problem (1.1) is given by

ui(z,y) = —2562°(x — 1)%y(y — 1)(2y - 1),
uz(z,y) = 256y*(y — 1)%x(z — 1)(2x - 1),
p(z,y) = 150(x — 0.5)(y — 0.5).

First, we report the case in which we have considered the values ¥ = 107% and
o = 1 with different values of . The results are contained in Tables 1-4. From these
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tables, we can see that, except A = 1 (the case of estimator in [24]), the recovery-
based estimator works well and gets nearly optimal convergence order. In addition,
the effectivity index E approaches 1.0, which illustrates the recovery-based estimator
performs well. Thus, it is concluded that if we choose very small value of A then we
can get good numerical results.

Level  Dof; el Order; 0y Order, E
0 162 0.3191 — 0.1974 - 0.6185

1 226  0.2676 1.0562 0.1780 0.6193  0.6652
2 381 0.2280 0.6137 0.1729 0.1123  0.7582
3 629 0.2001 0.5201 0.1363 0.9486 0.6810
4 1014 0.1751 0.5597 0.1252 0.3567 0.7148

Table 1. Numerical results based on v = 10_6, c=1,and A =1.

Level  Dof; el Order; 0y Ordery E

0 162 0.1798 0.1848 - 1.0280
1 261  0.1471 0.8428 0.1479 0.9336  1.0060
2 432  0.1118 1.0870 0.1121 1.1006  1.0025
3 699 0.0882 0.9852 0.0873 1.0376 0.9900

4 1110 0.0698 1.0111 0.0689 1.0269 0.9863

Table 2. Numerical results based on v = 107%, ¢ =1, and A = 107 1.

Level  Dof; el Order; Nr Orders FE

0 162 0.1790 0.1863 - 1.0406
1 263 0.1467 0.8215 0.1487 0.9312 1.0133
2 442 0.1097 1.1220 0.1110 1.1269 1.0120
3 707  0.0865 1.0101 0.0870 1.0371 1.0057

4 1084 0.0692 1.0467 0.0694 1.0593 1.0029

Table 3. Numerical results based on v = 10767 c=1and A = 1072,

Level  Dof; el Order; 0y Order, E

0 162 0.1792 0.1865 - 1.0406
1 263 0.1469 0.8215 0.1488 0.9311 1.0133
2 434 0.1106 1.1326 0.1120 1.1338 1.0130
3 717 0.0863 0.9895 0.0868 1.0165 1.0062

4 1124 0.0669 1.1341 0.0671 1.1421 1.0044

Table 4. Numerical results based on v = 10_67 c=1and A = 1073,
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Further, we consider the cases A = 1072 with different values of v and o. In
Tables 46, we show the evolution of the finite element errors when o grows. Besides,
in Tables 6-8, we report numerical errors and effectivity indices with small values
of v. From all the results in Tables 4-8, we can observe that the recovery-based error
estimator with a small value of A works well for the P; — P stabilized method.

Level  Dof; el Order; 0y Orders E
0 162 0.1989 - 0.2024 - 1.0176
1 278 0.1481 1.0914 0.1473 1.1765 0.9945
2 464  0.1093 1.1858 0.1097 1.1524 1.0030
3 714  0.0866 1.0841 0.0865 1.1025 0.9991
4 1091 0.0699 1.0069 0.0697 1.0181 0.9967

Table 5. Numerical results based on v = 107%, ¢ = 10, and A = 1073.

Level  Dof; el Order; 0y Ordery E
0 162  0.2351 — 0.2014 — 0.8566
1 277 0.1715 1.1745 0.1451 1.2207 0.8461
2 454 0.1225 1.3635 0.1114 1.0714 0.9094
3 695 0.0955 1.1694 0.0887 1.0721 0.9284
4 1024 0.0764 1.1539 0.0715 1.1076 0.9368

Table 6. Numerical results based on v = 10~%, ¢ = 100, and X = 1075.

Level  Dof; el Order; 0y Order, E
0 162 0.2351 - 0.2014 - 0.8566
1 277 0.1715 1.1745 0.1451 1.2207 0.8461
2 456 0.1232 1.3294 0.1117 1.0493 0.9072
3 695 0.0964 1.1647 0.0892 1.0718 0.9252
4 1069 0.0757 1.1233 0.0711 1.0486 0.9402

Table 7. Numerical results based on v = 10™%, ¢ = 100, and X = 1075.

Level  Dof; el Order; 0y Order, E
0 162 0.2357 - 0.2013 - 0.8540
1 279  0.1739 1.1184 0.1457 1.1876  0.8380
2 453 0.1234 1.4152 0.1131 1.0475 0.9162
3 718 0.0966 1.0625 0.0892 1.0306 0.9229
4 1164 0.0734 1.1372 0.0692 1.0482 0.9430

Table 8. Numerical results based on v = 10_2, o =100, and A\ = 1073,
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Finally, Figure 1 plots the uniform mesh without the adaptive method having 1624
triangle elements and the adaptive mesh with the recovery-based estimator with 1698
triangle elements. We can find that using almost the same number of elements the
distribution of the adaptive mesh is more reasonably based on the exact solution and

domain.
1
2?; SRR
oy
0.8 &
N
s 3
ey N
’;j'%‘ Pl K <
0.64 Een COREEROER
K7 ’A%AV» Eﬁ
S DR
<
0.4 K7 N Ak
. 1 s <
SBK SIREERIARE
s SRR
X RRSERE
0 REESPRPEK]
S Yav RS s
0.2+ SR SRRIRSASH
. RAY SRR o
ravod% SRR X
BRI RPEK L
SRS X
0 z ‘ ‘ ‘ KRR, OVAVAVVAVAS.YAYs

0 02 04 06 08 1
T
(a)

Figure 1. (a) uniform mesh with 1624 elements and (b) adaptive mesh with 1698 elements.

4.2. Analytical solution on L-shape domain. We consider the following nu-
merical test on the L-shape domain = (—1,1)? — [0, 1]? with a smooth solution

ui(z,y) = v 0 ,
V(z—0.1)2 + (y — 0.1)2
. z—0.1
va(@y) = - V@ —012+(y—01)2
Dy — L 1og(2:05) +10g(1.05) — 210g(0.05)
y+1.05 3

Note that this domain €2 is a non-convex domain.

In Figure 2, we draw the initial mesh and the refined mesh with the recovery-
based error estimator. We note that in the singular place the mesh is very dense
using the strategy of refinement of the mesh. Next, in Figure 3 we show relative
errors in energy norm about e, and 7, with v = 1075, ¢ = 1, and four values of \.
From the figure we can see that the relative error decreases in energy norm based
on the adaptive refinements and the value of the estimator 7, is very close to the
true error e, when the value of A becomes small, which illustrates the recovery-based
estimator works well for the P; — Py stabilized method. From Figure 3(a), we also
note that the value of the recovery-based estimator in [24], i.e., A = 1, is not close
to the true error, though the relative error becomes small.
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Figure 2. (a) the initial mesh and (b) the refined mesh.
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Figure 3. Relative errors in energy norm with (a) A =1, (b) A = 107, (¢) A = 1072, and

(d) A =1073.
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From the above test, we find that when ) is taken close to the value 1072, the
recovery-based estimator converges better. Thus, in the following tests, we focus on
the different values of v and o based on A = 10~2. Tables 9-11 show that when the
value of o increases, the effectivity index of the recovery-based estimator is weaker
for small viscosity coefficient v = 1076 although the relative error in energy norm
becomes small. However, from Tables 9 and 12-13, we can see that when the value of
viscosity changes from 10~* to 1078 and ¢ = 1, the effectivity index of the recovery-
based estimator is nearly stable and close to 1.

Level  Dof; el Order; 0y Ordery E
0 176 0.5906 — 0.3779 — 0.6400
1 449  0.3225 1.2920 0.2669 0.7431 0.8275
2 1028 0.1543 1.7794 0.1483 1.4180 0.9611
3 1719 0.1053 1.4870 0.1048 1.3516 0.9952
4 2792 0.0822 1.0201 0.0823 0.9964 1.0009

Table 9. Numerical results based on v = 10767 c=1and A = 1072,

Level  Dof; el Order; 0y Ordery E
0 176 0.5983 — 0.3682 — 0.6154
1 457  0.3259 1.2731 0.2669 0.6746 0.8188
2 1061 0.1526 1.8013 0.1436 1.4715 0.9408
3 1762 0.1055 1.4563 0.1042 1.2662 0.9872
4 2971  0.0828 0.9290 0.0824 0.8980 0.9952

Table 10. Numerical results based on v = 1076,0 =10, and A = 1072,

Level  Dof; el Order; 0y Ordery E
0 176 0.6869 — 0.3336 — 0.4857
1 469  0.3660 1.2850 0.2362 0.7050 0.6454
2 1106 0.2164 1.2243 0.1372 1.2665 0.6338
3 1858 0.1669 1.0024 0.1061 0.9909 0.6357
4 2960 0.1158 1.5685 0.0843 0.9870 0.7279

Table 11. Numerical results based on v = 1076, o =100, and A = 1072,

Level  Dof; el Order; Nr Orders FE
0 176 0.5906 - 0.3779 - 0.6399
1 449  0.3225 1.2918 0.2669 0.7429 0.8274
2 1030 0.1525 1.8050 0.1467 1.4411 0.9624
3 1714 0.1060 1.4289 0.1057 1.2884 0.9974
4 2672 0.0825 1.1259 0.0827 1.1033 1.0025

Table 12. Numerical results based on v = 10™%
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Level  Dof; el Order; Nr Orders FE
0 176  0.5905 - 0.3779 - 0.6400

1 447 0.3217  1.3032 0.2686 0.7330 0.8348
2 1014  0.1559 1.7690 0.1499 1.4242 0.9614
3 1687 0.1037 1.6031 0.1032 1.4658 0.9956
4 2883 0.0793 1.0009 0.0795 0.9737 1.0029

Table 13. Numerical results based on v = 1078, ¢ = 1, and A = 107 2.

It should be noticed that in practice the recovery-based estimator is efficient for
this singular problem with small viscosity and reaction coefficient or large viscosity
and reaction coefficient. We remark that for small viscosity and large reaction co-
efficient, our recovery-based estimator needs to be established for another stabilized
method, such as the stabilized method in [15].

Acknowledgements. The authors would like to thank the editor and re-
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