Previous |  Up |  Next

Article

Keywords:
tensor field; natural differential operator; Lie derivative; Yano-Ako operator
Summary:
We study natural differential operators transforming two tensor fields into a tensor field. First, it is proved that all bilinear operators are of order one, and then we give the full classification of such operators in several concrete situations.
References:
[1] Čap, A., Slovák, J.: On multilinear operators commuting with Lie derivatives. Ann. Global Anal. Geom. 13 (1995), 251–279. DOI 10.1007/BF00773659 | MR 1344482
[2] Frölicher, A., Nijenhuis, A.: Theory of vector-valued differential forms, I, II. Nederl. Akad. Wetensch. Proc. Ser. A 59 (1956), 338–350, 351–359. DOI 10.1016/S1385-7258(56)50047-9 | MR 0082554
[3] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer–Verlag, 1993. MR 1202431
[4] Krupka, D., Janyška, J.: Lectures on Differential Invariants. Folia Fac. Sci. Nat. Univ. Purkynianae Brunensis, Brno, 1990. MR 1108622
[5] Salimov, A.: On operators associated with tensor fields. J. Geom. 99 (2010), 107–145, DOI: 10.1007/s00022-010-0059-6. DOI 10.1007/s00022-010-0059-6 | MR 2823104
[6] Schouten, J.A.: On the differential operators of first order in tensor calculus. Rapport ZA 1953-012, Math. Centrum Amsterdam (1953), 6 pp. MR 0062508
[7] Schouten, J.A.: Ricci-Calculus: An Introduction to Tensor Analysis and Its Geometrical Applications. 2nd ed., Springer–Verlag Berlin, Heidelberg, 1954. MR 0066025
[8] Yano, K., Ako, M.: On certain operators associated with tensor fields. Kodai Math. Sem. Rep. 20 (1968), 414–436. DOI 10.2996/kmj/1138845745 | MR 0234370
Partner of
EuDML logo