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REMARKS ON NATURAL DIFFERENTIAL OPERATORS
WITH TENSOR FIELDS

JOSEF JANYSKA

ABSTRACT. We study natural differential operators transforming two tensor
fields into a tensor field. First, it is proved that all bilinear operators are of
order one, and then we give the full classification of such operators in several
concrete situations.

INTRODUCTION

In differential geometry, many natural differential operators transforming two
tensor fields into a tensor field are used. For instance, the Frolicher-Nijenhuis bracket
of two tangent-valued forms (see [2]), the Shouten bracket of two multi-vector fields
(see [6]), the Lie derivative of a form with respect to a tangent-valued form (see [3])
and so on. The common property of all such operators is that they are R-bilinear
and of order one.

In the present paper, we shall discuss such operators in the case that one of
the input tensor fields ¢ is of type (1,p) and the second input tensor field v is of
type (r,s). We shall prove that for p > 1, s > r, any natural differential operator
® transforming ¢ and v into a (r, s + p)-tensor field is R-bilinear and of order one.
If we assume that the operator is bilinear, then it is of order one for any p, 7, s.
Choice of the tensor field ¢ of type (1,p) is motivated by the paper [8] where
operators of the above type were studied under some special properties of the input
fields. In addition to the result of [8], we give the full classification of operators
without the assumption of special properties of the input fields.

We shall give as examples full classification of natural bilinear operators trans-
forming a vector field X or a (1,1)-tensor field ¢ or a (1,2)-tensor field S and a
tensor field v into tensor fields.

We assume that all operators are natural in the sense of [3]. We use the general
properties of such operators. To classify natural differential operators on tensor
fields we use the method of an auxiliary linear symmetric connection K, [4] p. 144],
and the second-order reduction theorem, [7, p. 165]. We assume that a k-order
natural operator also depends on a symmetric linear connection K. Then, according
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to the second reduction theorem, such operator is factorized through the covariant
derivatives up to the order k£ and covariant derivatives of the curvature tensor of K
up to the order (k — 2). Finally, we assume that the operator is independent of K.

All manifolds and mappings are assumed to be smooth.

1. PRELIMINARIES

Let M be an m-dimensional manifold and (z%) local coordinates on M. We shall
denote as 9; and d* local bases of vector fields and 1-forms.

First of all, we shall discuss the order of natural operators transforming two
tensor fields ¢ and 1 into tensor fields. We shall assume that ¢ is a tensor field of

type (1,p).
Theorem 1.1. All finite order natural differential operators transforming a (1,p),

p > 1, tensor field ¢ and an (r,s), s > r, tensor field 1 into (r,s + p) tensor fields
O(p, ) are R-bilinear and of order 1.

If we assume that the operator ® is R-bilinear we can consider weaker conditions
on types of tensor fields ¢ and .

Theorem 1.2. All finite order R-bilinear natural differential operators transfor-
ming a (1, p)-tensor field ¢ and an (r, s)-tensor field 1 into (r, s+ p)-tensor fields
O(p, ) are of order 1.

Proof of Theorem [1.1l Let us assume a k-order, k£ > 1, natural differential
operator
O: C®(TIPIM) x C°(TTI M) — C(T*+P) M),
where p > 1 and s > r. Then the associated fibred morphism (denoted by the same
symbol)
®: JHTIPIM) xpp JHT DM — TP M

is an equivariant mapping with respect to the actions of the (k-+1)-order differential
group GEF1 = reg J¥(R™ R™)q on the standard fibres of J*(T0P) M), JF(T () M)
and T(+P) M. The restriction of the action of G¥+1 to constant multiples of the
unite element of GE implies that ® has to satisfy the following condition

(1.1) ESTTP(R g, R) = B(RP Lo, kPO, ... KPR L0R
kS_T’Q[J, ks—?“+1a,(/}7 ol ks—?“-‘rkakw)
for all k € RT.
All exponents in the equation ([1.1)) are positive integers which implies, from the

homogeneous function theorem (see [3], p. 213]), that the operator ® is a polynomial
of orders a; in 0 and b; in 9"1p such that

k

(1.2) Z((p—i—l—l)al—i—(s—r—l—l)bl):s—r—i—p.
1=0

Since all coefficients in (|1.2]) are positive there are only two solutions in non-negative
integers: a) ag =1 by =1 and the others a;, b; are vanishing, b) a; =1, by =1
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and the others a;, b; are vanishing. These solutions correspond to R-bilinear 1st
order operators. O

Proof of Theorem [1.2l Let p, 7, s are arbitrary. If we assume that the operator
is R-bilinear then it is a polynomial of orders a; in 0'¢ and b; in 0'¢) such that
the equation is satisfied. But now some coefficients in can be negative
or vanishing. There are only two solutions in natural numbers which corresponds
to R-bilinear operators: a) ag = 1 by = 1 and the others a;, b; are vanishing, b)
a; =1, bg =1 and the others a;, b; are vanishing. Hence all finite order natural
R-bilinear differential operators are of order 1. ([l

According to Theorems [T.1] and [T.2] all R-bilinear natural differential operators
® are of the form

z dpmy. mptl dst1 K q1---qr
(1'3) (90 ?ﬁ) ( ]5+pkq1 mel...mp ats+1wt1...ts
i1 demy..mpyitiots q1...qn k
+ B ]5‘+pkq1--~q7‘ wh-».ts amp+1‘pm1...mp
0, ®-- R0, d*®---@d*r
i1 dpmy...mpty...t i1 tpmy...m ty...t
whereA1 i ”1 s+ dB1 T p“l )

]s+pk7QI ]s+pkq1
(see [3] p. 214]) Such absolute 1nvar1ant tensors are all possible linear combinations,

with real coefficients, of tensor products of the identity I of TM, i.e.
1. tpmr..mpty.. sy 1 ts+1
(1.4) Al v Za(,a -

J1--Jstpkqi...qr

are absolute invariant tensors

qr)

and
1.0 7np+1t1 Z i1 ts
(1.5) le...jsﬂjkql - bo 9 o(j1)* a(qr)”’

as , bs € R, where o runs all permutations of (r+ s+ p+1) indices.

Moreover, to obtain natural operators, coefficients a,, b, have to satisfy some
identities. To calculate these identities, we use the method of an auxiliary linear
symmetric connection K, [4, p. 144], and the second reduction theorem, [7, p.
165]. We assume that the operator ® also depends on K. Then, by the second
reduction theorem, the operator is factorized via the covariant derivatives of ¢
and v with respect to K. So, we replace derivatives of tensor fields with covariant
derivatives and assume that the operator is independent of K which gives a system
of homogeneous linear equations for a, and b, .

Remark 1.1. Let us note that natural differential operators satisfy the naturality
condition, and, moreover, they are local, see [3, p. 143].

Then the assumptions of Theorem [I.T]immediately ensure that all local operators
(with values in any vector bundle) must be of finite order (see the Peetre-like
theorem, [3 p. 176]).

On the other hand bilinear operators satisfying the infinitesimal version of
naturality, i.e., commuting with Lie derivatives, can be completely described
without the locality assumption (see [I]). In particular, the bilinear operators
on vector fields producing vector fields and satisfying the Jacobi identity, i.e.,
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commuting with Lie derivatives, are just the Lie bracket, up to constant multiples,
without any locality assumption.

2. NATURAL R-BILINEAR OPERATORS TRANSFORMING VECTOR FIELDS X
AND TENSOR FIELDS % INTO TENSOR FIELDS OF THE SAME TYPE AS

According to Theorem all such natural R-bilinear operators are of order 1.

2.1. Operator ®(X,—) applied to vector fields. It is very well known that
the Lie bracket is unique, up to a constant multiple, natural R-bilinear operator
transforming two vector fields into a vector field. We shall reprove this fact to
demonstrate the method of an auxiliary linear symmetric connection.

Theorem 2.1. All natural R-bilinear differential operators transforming two vector
fields into vector fields are constant multiples of the Lie bracket.

Proof. Let X and ¢y =Y be vector fields. Then from 7
O(X,Y) =20,
where
P =a1 X" 0pY" +as X' 0y Y™ + b1 Y™ 0, X" + b Y 0, X

Let us assume a natural differential operator ¥ transforming vector fields X, Y
and a linear symmetric connection K into vector fields. Then, according to the
second reduction theorem, [7, p. 165], this operator factorizes through covariant
derivatives VX and VY and it is an R-bilinear operator. In coordinates we obtain

U= X"V Vi +a XV, Y + 0 YV X+ b YV, X™
=ar X™ (0 Y" — Kp',YP) + a2 X (0, Y™ — K, ,Y7P)
+ 01 Y™ (0 X' — Ky p XP) + b Y (0, X™ — K", XP)

where Ky are the symbols of K. The part of ¥* independent of K coincides with
®’, so we obtain for ®° the following identity

0= (a1 X" Kpn'p +as X' K" p) YP + (b Y Kby + 0o YK, ™,) X7
It is easy to see that this identity is satisfied if and only if
a1—|—b1:0, a2:0:b2.

So
P =ay (XY —Y™0,X") =a [X,Y]
and ®(X,Y) is a constant multiple of the Lie bracket [X,Y]. O



REMARKS ON NATURAL DIFFERENTIAL OPERATORS 293

2.2. Operator ®(X, —) applied to 1-forms.

Theorem 2.2. All natural R-bilinear operators transforming a vector field X and
a 1-form v into 1-forms are linear combinations, with real coefficients, of two
operators

d(¥(X)), ixdy.
Proof. Let X be a vector field and ¥ be a 1-form. Then by 7
(X, ) = &; ',
where
D, = a1 X" Opthi + aa X™ 0jthy, + b1 0 O X™ + ba ¥y, 0, X™

Now, we replace partial derivatives with covariant derivatives with respect to
an auxiliary linear symmetric connection K and assume that the operator is
independent of K. We obtain the following identity

0= (a1 +az —bo) X" Ky,Pitb, — by py K™, XP.
So, we have
a1 +ay—by=0, b =0
and
®; = a1 X" (Omti — 0ithm) + b2 (X™ Oithn + Ym 0;: X™)
which is the coordinate expression of aj ixdy + by d(1(X)). O
Remark 2.1. In differential geometry the Lie derivative Lxy = ixdy + dixvy

is very often used, but according to Theorem any linear combination of
d(¥(X)), ixdy is a natural 1-form.

2.3. Operator ®(X, —) applied to (0,2)-tensor fields. We assume a (0, 2)-tensor
field 4.

Theorem 2.3. All natural R-bilinear differential operators transforming a vector
field X and a (0,2)-tensor field i into (0,2)-tensor fields are linear combinations,
with real coefficients, of four operators

LXw ’ LX’J? d(Xﬂﬁ) ) d(XJ’lZ) )

where 9 is the (0,2)-tensor field given as ¥(Y,Z) = (Z,Y) and (X_1p)(Y) =
Y(X,Y) for any vector fields X, Y, Z.

Proof. Let X be a vector field and ¢ be a (0,2)-tensor field. Then by (1.3)—(L.5)
O(X, ) =0 d @d,
where
Qij = a1 X" Omibij + a2 X Ompji + a3 X 0ihmj + as X 0ihjm
+ a5 X™ 0jthim + as X™ 0jtmi + b1 Yi5 O X™ + ba 10 Oy X™
+ b3V 0; X + ba Vjm 0:X™ + bs Vi 0;X™ + b6 Vi 0;X™ .
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Now, we replace partial derivatives with covariant derivatives with respect
to an auxiliary linear symmetric connection K and assume that the operator is
independent of K. We obtain the following identity

0= (al + a3 — b3) Xm Kmpi 1/Jpj + ((12 + a4 — b4) xXm Kmpj ’(ﬁm
+ (a1 + a5 —bs) X™ KinPj ¢ip + (a2 + ag — bg) X™ Kp.Ps ¥
+ (a3 + ag) X™ Ki¥j mp + (aa + a5) X™ K5 Ypm
- bl ¢ij Kmmep - b2 ¢ji Kmmep .
The above identity is satisfied if and only if b; = 0 = be and the following system
of homogeneous linear equations is satisfied

a1 +az—b3 =0, a, +as —bs =0,
as+ay —by =0, az +ag —bsg =0,
as+as =0, as+ag =0.

Then we get
Dy = ay (X™ Optij + Ymj i X™ + Vi 0, X™)
+ az (X™ O ji + Vi 0;X™ + U 0; X™)
+as (Xm 0i¥mj + ¥mj 0; X™ — X™ 0jthmi — Vmi (’)ij)
+ ag (X" 0ithjm + Vjm O, X™ — X 0j0im — Yim 0;X™)
whichNis the coordinate expression of a linear combination of Lx v, LXi/;, d(X ),
d(X ). O

Remark 2.2. Let us note that in above Theorem B.3] we have used the Lie
derivation of any (0, 2)-tensor field defined as

(LXw)(sz) = XQZJ(Y?Z) 71/J([X,Y],Z) *¢(Y’ [sz])v

for any vector fields X, Y, Z. In the case that i is a 2-form this Lie derivative
coincides with Lx1 = ixdy + dix.

3. NATURAL R-BILINEAR OPERATORS TRANSFORMING (1,1)-TENSOR FIELDS ¢
AND (%, *)-TENSOR FIELDS % INTO (*,* + 1)-TENSOR FIELDS

A (1,1) tensor field ¢ can be considered as a linear mapping ¢: TM — TM.
As Tr ¢ we assume the contraction and I: TM — T'M is the identity. We do not
assume special properties of ¢.

3.1. Operator ®(p,—) applied to (1,1)-tensor fields. Full classification of
natural R-bilinear operators transforming two (1,1)-tensor fields into (1,2)-tensor
fields was done in [4] p. 152] by using the other method. We recall this classification.

Theorem 3.1. All natural R-bilinear differential operators transforming (1,1)-tensor
fields ¢ and 9 into (1,2)-tensor fields form a 15 parameter family of operators
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given as a linear combination of the following operators
dTro)oy, dedTre), dTry)ee, ¢odTry),
(Try)d(Tre) @I, (Try)I@d(Tre), (Tre)d(Try) 1,
(Trp)I®d(Try), (d(Trp)oy) @I, TR (d(Trp)o),
(d(Try)op) @I, I@ (d(Tr)oy), d(Tr(poy)) @I,
I®d(Tr(pov)), N(p,v),
where 1 is the identity of TM and N(p, ) is the Fréolicher-Nijenhuis bracket. [

Remark 3.1. It is very well known that the Frolicher-Nijenhuis bracket, [2], has
values in tangent-valued forms. If we assume operators transforming ¢ and v into
tangent-valued 2-forms we obtain 8 parameter family generated by

d(Tro) Ay, d(Try) Age.
(Trp)d(Tr) AL, (Tre)d(Try) AL,
(d(Trg) o) AL (d(Tryp) o 0) AT,
d(Tr(pov)) AL, N(p,9).
3.2. Operator ®(y, —) applied to 1-forms.

Lemma 3.1. We have the following 6 canonical 1st order natural R-bilinear
differential operators

(Trp)dy, ¢v@dTry), dTre)ev,
d¢°1§07 dwOQSDv d(w0¢)7
where (dip o1 0)(X,Y) = dip(p(X),Y) and (dip 02 9)(X,Y) = dyp(X, o(Y')) for any
vector fields X, Y. O

Remark 3.2. We have the following independent operators with values in 2-forms

(Tl" QO) dl/) ) 7;[} A d(TI’ 30) ) Alt(dlff 01 (P) ) d(w © SD)
which follows from Alt(dyo; @) = Alt(dipoa) , where Alt is the antisymmetrisation.
Theorem 3.2. All natural R-bilinear differential operators transforming ¢ and ¥

into a (0,2) tensor fields form a six parameter family of operators which is a linear
combination of operators from Lemma[3.1}

Proof. According to —
D(p,p) = @i d' @ d
where
®ij = a1 ¢y, 0ithj + az oy 05 + as @ Ot + aa ¢} 05,
+ a5 ¢} Omthi + a6 @§* Oipm
+ b1 9Yi O P + ba b 05y + b3 1 O™ + bathj Oipy,
+ b5 Ym 005" + be Ym 057" .



296 J. JANYSKA

In order to calculate relations for coefficients a;, b;, ¢ = 1,...,6, we use the method
of an auxiliary linear symmetric connection K, [4, p. 144]. We replace derivatives of
tensor fields with covariant derivatives and assume that the operator is independent
of K. Then we get

0= (a1 +a2) K51y
+ @7 (a3 + as — be) Kn®j ¥y — b3 P 1))
+ ¢ [(as + ag — bs) KmPs thp — by KP4
+ " [br K5 i + bs KinPs by + (bs + be) Ki¥j ] -
Then by and by are arbitrary, by = bz = 0 and
bg = —bs, as = —ay, ay = —ag — by, ag = —as + bs .
Hence
©ij = ax o, (05 — Oj¢)
+ a3 ¢} (Omtj — jbm) + a5 ' (Omti — Fithm)
+ b2 Oy, + bath; 0oy
+ b5 (@} Oithm — @7 0jhm + hm (Di0]" — Bj07")) -

which is the coordinate expression of a linear combination of operators from
Lemma [3.11 O

Corollary 3.1. If the 1-form ¢ is closed, then all R-bilinear 1st order natural

differential operators form the 3-parameter family of operators generated by
Yp@d(Try), d(Tro)@v, d(oyp).

Moreover, we have 2 independent operators ¥ A d(Tr @) and d(¢ o ) with values in

2-forms.

Remark 3.3. We can define others natural R-bilinear operators on ¢ and . But,
according to Theorem [3:2] they have to be obtained as linear combinations of
operators from Lemma [3.1]
Let X,Y be vector fields, in [§] the operator ® was defined as follows
(0, )(X,Y) = (Lpx)¥ — Lx (¢ o 9))(Y)

which can be expressed as the linear combination of operators from Lemma 3.1
D(p,y)) =dporp—d(op).

Further, according to [3] p. 69], we can define the Lie derivative of ¢ with respect
to ¢ as

Loy = [iw dlyp = ipdt) — digt)
which is a 2-form. It is easy to see that
Loty =dipoy o+ dipoyp—d¥op).
For the identity of TM we have

Ly(y o ¢) = ird(p 0 ) — dir(¢p 0 p) = d(3p o )
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and we obtain, [§],
2 Alt®(p, 1) = Lo — Li(tro ¢).
3.3. Operator ®(p, —) applied to (0,2) tensor fields. Let us denote as Alt )
the antisymmetric part of 1, i.e. in coordinates
Altyy =2 (i —vj)d' @d = ¢ d' A

First of all, we describe several types of 1st order natural R-bilinear operators
which are given by the tensorial operations (permutation of indices, tensor product,
contraction, exterior differential).

Lemma 3.2. ¢ ® d(Tr ) defines six independent natural R-bilinear differential
operators given by permutations of subindices, so for vector fields X,Y, Z we have
operators

X Y)d(Tr)(Z), (Y, X)d(Tre)(Z), (X, 2)d(Tre)(Y),
W(Z, X)d(Tro)(Y), (Y, Z2)d(Tre)(X), $(Z,Y)d(Tre)(X).
Moreover, Alty A d(Tr @) is the unique operator with values in 3-foms.

Corollary 3.2. If the tensor field ¥ is symmetric or antisymmetric then we get
three independent operators from Lemma[3.2

V(X Y)d(Tro)(Z), (X, 2) d(Tre)(Y) , (Y, 2) d(Tr 9)(X)) .

Lemma 3.3. We have the following siz independent natural R-bilinear differential
operators

(Tro) d(Alty), d(Alty) oy, d(AltY)osp, d(Alty)os @,
d(Alt(sp o1 ), d(Alt(¢ oz ).

Corollary 3.3. 1. If ¢ is symmetric then Alt ¢ = 0 and Alt(¢o1¢) = — Alt(poqp)
and we have the unique operator from Lemma

A(ATt( 01 ).

2. If ¢ is antisymmetric then Alty = ¢ and Alt(¢ o1 ¢) = Alt(y) 02 ¢) and we
have five independent operators from Lemma[3.3
(Tro)dy, diporp, diporp, dipozep,

d(Alt(¢ 01 ) .
From Alt(dy o1 @) = Alt(dy og ) = Alt(dyp o3 @) we have 3 operators with values
in 3-forms.

Moreover, if ¥ is a closed 2-form, then there is the unique operator from
Lemmal3.3

d(Alt( o1 p))

which has values in 3-forms.
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If the tensor fields ¢ and v satisfy
(o1 9)(X)Y) = (o2 0)(X)Y) & ¥(e(X),Y) =9¢(X,¢(Y))

then 1) is said to be pure with respect to . Natural R-bilinear differential operators
(¢, 1)) on pure tensor fields were studied in [5] [8]. We recall the main result.

Theorem 3.3. Let ¢ is pure with respect to ¢. Then
‘I’(SO, w)(Xv Yv Z) = (Lap(X)'ll) - LX('w o1 @))(va Z)
is a (0,3)-tensor field. O
The above operator for pure tensor fields can be generalized for any tensor field
.
Theorem 3.4. For any vector fields X,Y, Z the operators
P (p,)(X,Y,Z) = (Lyx)¥ — Lx (¥ 01 9)) (Y, Z)
— (Loz)¥ = Lz(¥ 01 9)) (Y, X)
+ (’(/J 02 QD)(YY’ [X7 Z]) - (’(/J o1 (AD)(Y) [X7 Z])
and
(0, 0)(X, Y, Z) = (Lox) — Lx (¢ 02 9)) (Y, 2)
— (Lpv)¥ — Ly (¢ 02 9)) (X, Z)
- W 02 90)([X7 Y]a Z) + W 01 90)([X7 Y]a Z)
are (0, 3)-tensor fields with the coordinate expressions
+ ¥mi (Oep]" — 0501") + Yjm (Orpi” — 0ip)")
+ Yk (507" — Dip]")) X' Y7 2P

and
Do (0, V) (XY, Z) = (0] Omtbjk — ©F OmWir + €7 (8jhim — Oithjm)
= Yim (Okp]" — 050%") + im (Okpi" — Oipy")
+ Yk (0507 — 0i0]")) X' YT ZF,
respectively.
Proof. It is easy to prove it in coordinates. (I

Remark 3.4. Any linear combination of the above operators is an R-bilinear
operator, for instance

(6 (ALt ) o5 — 6d(Alt(t o1 ¢)) — B1(p, ) (X, Y, Z) =
= (9" (Dot = Outomj = Do) + 1 (Oitbyon — Dgthim + Imtyy)
+ (Yjm + Ymg) (Oipl — Bppl™)) XPYI ZF
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(6 d(Alt ) o1 ¢ — 6d(Alt(1h 02 ) — Do, 1)) (X, Y, Z) =
= (27" (Ot — Ojtbmi — Om¥s) + 5" (Oitorm — Okbim + Omthir.)
+ ka + wmk) (8190?1 - 8]90;%)) X'y z* )

(—6d(Alt) 0s  +6d(Alt¢) 03
— @1 (p, 1) + Do, ) (X, Y, Z) =
= (&7 (0i¥km — Okim — Om i) + @ (9%mi — Otmy + Omtlis)
+ (Vim + Vi) (0507 — Onp})")) X' Y7 2%,
and
(@1(p, %) + Pa(p,9)) (X, Y, Z) =
= (297" OmWj + €5 (Oxthmi — Oithmik — OmWir)
+ op (05%im — 00 jm — Omji)
+ (Yim — VYmi) (050" — Orp]") — 2%jm (Oip)’ — Okpi")
— 2¢mi (0i]" — 0507")) X' YT Z*

are such operators which we shall need later.

Theorem 3.5. All natural R-bilinear differential operators ® transforming a
(1,1)-tensor field ¢ and a (0,2)-tensor field 1 into (0,3)-tensor fields form a
14-parameter family which is a linear combination of operators described in Lemma

Lemma[5-4 and Theorem[37)

Proof. By Theorem and (|1.3)—(L.5) we get that all natural R-bilinear differen-
tial operators are of the form

where

Qi1 = ay @y Othji + az @i Oitbrj + az o, 05k + ag oy 05

+ as o, Okthij + ae o, Outhji

+ a7 0" Omtjn + ag 07" Omibrs + ag @i 0jthmi + a10 07" 0Vkm
+a11 ;" Othms + a2 ;" OkVjm

+ a13 05" Oihmk + 14 95" Oihkm + a15 @} Omtbir + 16 5" Om ki
+ a17 ¢} Opim + a18 ;" Opthmi

+ a19 0} i jm + a20 Pk Oithmj + a1 @' Ojthim + a2z 0" 0jhmi
+ a23 )" OmPij + aza Py Omibyi

+ b1 Yij Oy, + b2 i Okipry, + b3 ik 001, + ba i O,
+ b5 Vjk Oioy + b6 Yij Oipp,
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+ b7 Yinj Ok 0" + b8 Yjm Okl + bg Yk 057" + b1o Yem 007"
+ 011 Yk Ol + b12 Yrj Ompy

+ 013 Yim Ok + b14 Yimi Ok} + b1s Yik Omp)" + bie Vri O]
+ 017 Yk 0ip]" + big Yrm Oip}"

+ 019 Vij Oy + bao Vi Ompr + bar Yim 001" + bao i 001"
+ bog Vjm 0i %" + boa Y O -

In order to calculate relations for coefficients a;, b;, ¢« = 1,...,24, we use the
method of an auxiliary linear symmetric connection K, [4, p. 144]. We replace
derivatives of tensor fields with covariant derivatives and assume that the operator
is independent of K. Then we get

0 =gm [(a1 + a3) KiPj Ppr. + (a2 + as) KP ¥y + (a2 + aa) KiPj iy

+ (a1 + a6) KiP i jp + (a3 + as) Kk vip + (aa + a6) K7 ¥pi)

+ o [(ar + ag — bg) K71 pi, + (as + a1o — b10) K ;P m Pip
+ (a7 + a12 — bg) Ky’ ¥jp + (ag + a1y — br) KpPi p;
+ (ag + a11) K;Pk Ymp + (a10 + a12) K;Pk Ypm
— b1 KpP i g — b1t KpP o Vi

+ @' [(a13 4 a15 — b17) KiPm thpi + (a14 + a16 — b1g) KiP i Upp
+ (a15 + a17 — b13) K Pi Yip + (a16 + a18 — b1a) Ko Pr pi
+ (a13 + a18) Ki¥k Ymp + (014 + a17) KiP' i Ypm
— b16 KpPm Vri — bis KpPm Vik]

+ it [(az0 + azs — baa) Ki¥m thp; + (a19 + aza — bas) Ki¥ i ¥jp
+ (@21 + agz — ba1) KnPj tip + (a22 + agq — ba2) KnPj ¥y
+ (ag0 + a22) Ki¥j Ymp + (a19 + a21) K5 Ypm
— boo KpP i thji — b1 KpPom ¥y

+ O [b19 K Pk ij + bao K 0ji + bis Kn®j Yk + bie K5 Y
+ b11 KpnPs i + bio KV
+ (13 + b21) KPk im + (D14 + bo2) KiP i i + (bs + baz) KPP jm
+ (b7 + b2a) KiPk hmi + (b1 + b18) KiPj Yrm + (b + br7) KiPj U] -

So, the operator is independent of K if and only if the following conditions for
coefficients are satisfied:

I: Coefficients by, ..., bg are arbitrary and we obtain that the corresponding part
of the operator ®(p, 1) is a linear combination of operators from Lemma We
shall put B; =b;,i=1,...,6.
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IT: For part staying with ¢ we get that the coeflicients ay, ..., a¢ satisfy the
conditions

ay “+as =
a +ag
a2 +as
a2 +aq
as +as
a4 +ag =

Il
coocococo

This system of equations has one free variable and putting ag = B7 and the others
free variables are vanishing we get a multiple of the operator

Dy = o (0055 — Oty + Ojni — Ot + Onthij — Owtdjs)
which is a multiple of the operator
(Tr ) d(Alt )
from Lemma [3.3
I1I: For part staying with ¢P we get the following conditions. The coefficients
bi1 = bi2 = bis = big = big = byo = 0.

Further

boy = —b7, baz = —bg, bao = —bia,
ba1 = —b13, big = —bio, bi7 = —bg .

IV: For part staying with ¢! the coefficients ar, ..., a2 satisfy

ay +ag = by,
ay +a;2 = bg,
ag +a11 = by,
ag +a1o = b,
a9 +ai11 = 0,
aio 4+a12 = 0.
V: For part staying with <p§-’ the coeflicients ay3, ..., a1s satisfy
a13 +azs = by,
a3 tais = 0,
aiq +air = 0,
a4 +aie = bis,
ais +air = bz,

aie +aig = bus.
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VI: For part staying with ¢} the coefficients aqg, ..., a4 satisfy

+ao1 = 0,
+azs = bos,
+ags = boy,

+ag9 = 0,
“+az3 ba1,
b22 .

a9
a9
a20
a20
a21

a22 tazy =

The above systems IV-VT of linear equations we modify to

ay +ag = by ,
ag +aig = b1o,
ag +a11 = 0,
a1o +az = 0,
a1 +ap = b7 — bio,
0 = by —big—bg+by.
a3 +ays = b7,
a4 +aie = bis,
ais +air = b1z,
a6 +aig = b1,
a7 +aig = b1z — bi7,
0 = big—big—biz+bi7.
aig +as1 = 0,
a0 +ag2 = 0,
an +as3 = ba1 ,
a22 +azy = b2z,
ass  +agy = ba1 + bas,
0 = bog + bag — bay — bag,

SO7 for coefficients b7 s bg 5 bg s b10 5 b13 5 b14 y b17 s b18 s b21 y b22 s b23 s b24 we have
a system of homogeneous linear equations with 4 independent variables. We choose
as these free variables b1g = Bg, bas = Bg, bas = Big and byy = By1. We obtain

by = —B11, bigs = Bs,
bg = =B, bir = Bg — Bio + B11,
by = —Bg — B1o + B11, ba1 = By — Byo + Bi1,
big = —Bs, b2 = By,
b1z = —Bg + Big — B11, bes = Bio,
b4 = — By, b2a = B11.

Now, putting ajs as a free variable Bio, we get from the system of equations IV
a7 = —Bi2 — By, ajp = —Bia,
ag = B2 — Bg, aj; = —Bia + Bs — Bi1,

ag = Bis — Bg + D1, a2 = Byo.
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Further, putting a;5 as a free variable B3, we get from the system of equations V

a;3 = —Bis, aig = —Bi13 — By,
a14 = Bi3 + Bg + By, aj7 = —Bi13 — Bg — By,
a5 = Biz + Bg + Big — B11, aig = Bi3.
Finally, putting ao4 as a free variable By4, we get from the system of equations VI
a1g = —B14 + Bio, azz = —Bi4 + By,
azo = B14 — By, a3 = —Bi4 + By + By,
a1 = By — B, a4 = Big.

Let us put Bi2 = 1 and the others free variables are vanishing. We get
it = —@7 (Om¥je — OmWUij + 0jVkm — 0jtbmi + Outhmj — Oktjm)
which is the coordinate expression for a multiple of
d(Alt ) o1 .

Similarly for By3 =1 (respective Bi4 = 1) and the others free variables vanishing
we get multiples of d(Alt 1)) og ¢ (respective d(Alt ) o3 ).

If we put Bg = 1 and the others free variables vanishing we get
Qijr = 07" (Ok¥mj — Om¥rj — O5¥mi) + @5 (0ithkm + Omix — Oim)
+ (Ymk + Vrm) (0ip]" — 0507 -
According to Remark this operator corresponds in coordinates to
6d(Alty) oq p — 6d(Alt(¢) 02 ¢)) — Pa(p, V).
If we put By = 1 and the others free variables vanishing we get
@ik = 07" (0iYkm — OmWPri — Oktbim) + 0 (=0i¥Ymj + 0j¥mi + Omij)
According to Remark this operator corresponds in coordinates to
—6d(Alt ) 03 ¢ + 6 d(Alt 1)) 03 0 — P1(p, 1) + Pa(p,¥) -
If we put B1p = 1 and the others free variables vanishing we get
Qijk = — 97" Omjr + 0" Omtbir + 0" (0itjm — 0jVim)
+ Vjm (Oipn — i) — Ymi (057" — i)
+ Yim Ok} — Ojk") -
If we put B1; = 1 and the others free variables vanishing we get
@ik = 07" (0j%mk — Ok¥mj) — @5 Omtik + Pk Omibij
+ Ymj (Oipr” — ki) + Yk (0597 — 0ip]")
+ Yim (051" — Okepy) -
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Then the sum of the last 2 operators, i.e. Bjg = 1 = B, gives
ik = @i (0j%mr — Okomj — Omjr) + @r' (Omtij + Oithjm — 0jthim)
+ (Yjm + ¥my) Ok — Ok -
According to Remark this operator corresponds in coordinates to
6 d(Alt 1) o3 o — 6 d(Alt(1 01 ) — P1(p, ).
On the other side for B1g =1, B = —1 we have
Dijr = 0" (=05mk + Oxmj — OmPjk) + 25" Omthin,
+ @k (=0mij + 0ithjm — 0jbim) + 2Pim (e} — 0j0)")
+ (Yjm — VYmg) (0ip)" — Okpi") — 2¢mi (050" — 0ip")
which, according to Remark [3.4] corresponds in coordinates to
(I)l(<)07 ?/J) + (1)2(907 Z/J) .
So all 14 independent operators are generated by 14 independent operators described

in Lemma Lemma [3.2] and Theorem [3.4 O

Remark 3.5. Let ¢ be a 2-form. According to [3, p. 69] we can define the Lie
derivative of ¢ with respect to ¢ as

Loy = [ip, d|Y =iy dip — digy)
which is a 3-form. It is easy to see that
Lo =dyp o1 o+ dip o3 p+ dip o3 p — 2d(Alt(p 01 ) .
4. NATURAL OPERATORS TRANSFORMING (1,2)-TENSOR FIELDS S AND 1-FORMS
1 INTO (0,3)-TENSOR FIELDS

Let us recall that, according to Theorem all natural operators transforming
(1,2)-tensor fields S and 1-forms ¢ into (0,3)-tensor fields are R-bilinear and of
order 1.

4.1. General case. We shall denote by C}S, i = 1,2, the contraction with respect
to the corresponding indices.

Lemma 4.1. We have 6 canonical natural differential operators given by C}S®di,
i=1,2, namely

(CLS)X)dp(Y,Z), (CLS)(YV)dy(X,Z), (CiS)(Z)dv(X,Y),
(C29)(X)dp(Y,2), (C28)(Y)dp(X,2), (C28)(Z)dp(X,Y).

Lemma 4.2. We have 6 canonical natural differential operators given by the
composition of S with dv, namely

dp(S(X,Y), 2), dp(S(Y,X),Z), dp(S(X,2),Y),
dp(S(Z,X),Y), dp(S(Y,2),X), dy(S(Z,Y),X).
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Lemma 4.3. We have 6 canonical natural differential operators given by ¢ ®
d(C1S), i =1,2, namely

Y(X)A(CLS)(Y,Z), »(Y)d(CIS)(X,Z), (Z2)d(C18)(X,Y),
V(X)d(Cy)(Y,Z), w(Y)d(C38)(X,Z), $(Z2)d(C38)(X,Y .

Lemma 4.4. Let us assume the antisymmetric part Alt S of S with the coordinate
expression Alt S = 1(S%, — Si;)9; ® d? @ d*. Then

(4.1) d(yp o Alt S)
is a first order natural R-bilinear differential operator with values in 3-forms.

Corollary 4.1. If the 1-form v is closed then we have only 7 operators from
Lemmal[{-3 and Lemma []7)

Theorem 4.1. All natural differential operators transforming a (1,2)-tensor field
S and a 1-form 1 into (0, 3)-tensor fields form a 19-parameter family of operators

described in Lemmas [{-1H{-4

Proof. According to Theorem and (|1.3)—(1.5)
(S, ) = Byjpd @ d @ d",
where

Qijr = a1 Sy 05bn + az Sy Oy + az Sy Obr + aa Sy O

+ as S;y 0ivj + ae Sy, 05i

+ a7 Siy, 050k + as Siy, Oxj + ag S3y, Oithk + a10 Siy, Okti
+ a11 Sy, iy + a1z Spy, 04

+ a13 Si} Ok + a14 S7j Omx + a15 Siy; Omtbj + a16 Sij Omi);
+ a17 S Omi + ais Si; Om b

+ a19 87} Oktbm + a2 S} Okthm + a1 Sjy; Ojthm + agz Sy Ojhm
+ az3 Siy, Oithm + a24 Sy Oith,

+ 019 0; Sk, + b21i 0555, + b3 i OSTy, + ba )i OSyyy;
b 5 Oy ST+ b )y O ST

+ b7 051y, + bs ¥ 0iSh, + bo 5 OkSim, + bio ¥ OkSy;
+ b11 9 Om STy + bi2 9 OmSh;

+ b13 Y 0iShy, + bra i 0S5 + bis ¥k 0585, + bie Y 9557,
bz Gk O ST -+ bys g, Dy ST

- b1g U O3S + b U D5SIT + oy G D5 STE + o i D5 ST
+ b2 VY Ok Sy} + baa Ym Ok STy .

In order to calculate relations for coefficients a;, b;, i = 1, ..., 24, we use the method
of an auxiliary linear symmetric connection K, [4]. We replace derivatives of tensor
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fields with covariant derivatives and assume that the operator is independent of K.
Then we get

0 =1y, [SI (a1 + az) Ki?; + Sir, (a7 + as) Ki?;

+ 57 (as + as) KiPs + Shh, (a9 + a10) KiPs
+ S0 (as + ag) K2 + Sty (a11 + ai2) K75
+ 577 (a13 + a19 — bag) K" + SJ; (a14 + azo — bas) K",
+ Si (a15 4+ az1 — bar) K;Pm + Sit (a16 + aze — ba2) K7
+ 71 (a17 + azs — big) Ki¥m + Sil% (a1s + azs — bag) K]

+ P [(bro + ba1) KiPj Spi + (bio + baa) KiP'y S}y
+ (b2o + b23) K"k Sy} + (b2o + baz2) KPS,
+ (ba1 + bag) K71 S 4 (baz 4 bas) K7y Syt |

+ i [(by + b3) K7 Sy, + (ba + ba) K37, ST,
+bs (K" Spi, + KnPx STy — K™ S5,)
+ b6 (KonPk Sy + K5 Sty — K™ SE;)]

+ 5 [(br + bo) KPS, + (bs + b1o) K%k Sy,
+ 011 (K Sp + K1 Siy — K™ S5,)
+ b1 (KmPx )} 4 K S, — K™ Sy |

+ [(b13 +b15) KP; S;nm + (b1a + big) KiP; Sﬂp
bz (Kons ST+ K5 ST — K™, SP)
+ b1 (K5 Spi + K S35y — K™y Sfi)] .

So, we get b3 = —by, by = —ba, bg = —by, big = —bg, big = —b14, b1 = —by3

and bs = bg = by; = by1a = b1z = big = 0. This corresponds to linear combination
of operators from Lemma [£.3]

Further ay = —aq, ay = —as, ag = —ar, a9 = —ag, ag = —as and a12 = —aq1
which gives a linear combinations of operators from Lemma [4.1
For coeflicients byg, . .., bag we obtain the following system of homogeneous linear
equations.
big +ba1 = 0,
b1g +by = 0,
b2o +ba3 = 0,
bao +bao = 0,
bo1 +b23 = 0,
This system of equations has one free variable and if we put byy = —B we obtain

b19 = b22 = b23 =B and b20 == b21 == b24 =-B.
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Finally, we have the system of linear equations

a1z +aig — bz =0, a14 + agg —bag =0,
a5 + a1 — by =0, a16 + a2 — bao =0,
ay7 + azz —byg =0, a18 + azq — by = 0.

It gives the following operators
Py = a13 S} (Om¥r — Oxthm) + B (
+a14 S7} Omtr — Oxtbm) — B (S} Oxtbm + 1 Ok S}7)
+ a15 S (Om ¥ — 05m) — B (Six 0jtbm + ¢m 0; i)
+ a16 Sg; (Omt; — O9m) + B (S} 0j¢m + ¥m 0;517)
+ a17 S5 (Omi — Oitdbm) + B (Sk Oithm + Ym 0:S]y)
+ a18 Sgj (Om¥i — Otom) — B (Sg; 0ithm + thm 0:55) -

Now, if we put B = 0, we get a linear combination of operators from Lemma [4.2]
Finally, putting B = 1 and the others free variables are vanishing, we obtain

(4.2) D = S} Okt + Y OST; — ST} Otbm — Ym OS]
ik Oj%m — Ym 055 + 51 05tbm + ¥m 0; 51}
ST Otbn + o DS — ST Dithm — o DS
+ m (8:ST} — 0:5¢; — 057k + 0;Sii + OkS}} — OhS}})
= (87— S31) Db + (STL — ST) Do + (S — ST3) Ditom
+ Y (8:STh — 0:S1s + 0;51% — 0,5k + 0kSfy — 0kST7) -
The operator ®(S, ) defined by is a multiple of

+

d(¢ o Alt S)
described in Lemma [£:4] So all natural operators are linear combinations of 19
operators from Lemmas 4.4 [l

4.2. The case of tangent-valued 2-forms. Now, we assume that S is a tangent
valued 2-form, i.e. AltS = S. Then there are 3 independent operators given by
Lemma 3 independent operators given by Lemma and 3 independent
operators given by Lemma

Remark 4.1. If S is a tangent-valued 2-form, then we have the Yano-Ako operator,
[8], defined as

(S, 9)(X,Y, Z) = (Lsxy)¥)(Z) — (Lx (¥ 0 5))(Z,Y)
— (Ly (¥ 0 9))(X, Z) + (o S)([X,Y], Z) .

We can express this operator as the linear combination of the basic operators in
the form

(S, Y)X,Y,Z) =d(xp o S)(X,Z,Y)+ dyp(S(X,Y), Z).
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Remark 4.2. Let as assume that S is a tangent-valued 2-form. According to [2]
and [3, p. 69] we can define the Lie derivative of 1) with respect to S as

Lstp = [is,dl¢ = isdip + dist)
which is a 3-form. It is easy to see that
(Ls)(X,Y, Z) = dp(S(X,Y), Z) + dyp(S(Y, Z), X) + dy(S5(Z, X),Y)
+d(voS)X,Y,Z).
Remark 4.3. If S is a tangent-valued 2-form, then we can consider the Lie

derivation of 1 o S with respect to the identity tensor I and obtain the tangent
valued 3-form

Li(¢o§) =id(¢p 0 S) — dir(yp 0 S) = d(¢p0 5).
The Yano-Ako operator is antisymmetric in the first two arguments. On the other

hand Lgt and Ly(10S) have values in 3-forms. If we assume the antisymmetrization
of the Yano-Ako operator we get the following identity, [8],

3ALL®(,S) = Lgtp + 2 Li(1ho S) .
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