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REMARKS ON NATURAL DIFFERENTIAL OPERATORS

WITH TENSOR FIELDS

Josef Janyška

Abstract. We study natural differential operators transforming two tensor
fields into a tensor field. First, it is proved that all bilinear operators are of
order one, and then we give the full classification of such operators in several
concrete situations.

Introduction

In differential geometry, many natural differential operators transforming two
tensor fields into a tensor field are used. For instance, the Frölicher-Nijenhuis bracket
of two tangent-valued forms (see [2]), the Shouten bracket of two multi-vector fields
(see [6]), the Lie derivative of a form with respect to a tangent-valued form (see [3])
and so on. The common property of all such operators is that they are R-bilinear
and of order one.

In the present paper, we shall discuss such operators in the case that one of
the input tensor fields ϕ is of type (1, p) and the second input tensor field ψ is of
type (r, s). We shall prove that for p > 1, s > r, any natural differential operator
Φ transforming ϕ and ψ into a (r, s+ p)-tensor field is R-bilinear and of order one.
If we assume that the operator is bilinear, then it is of order one for any p, r, s.
Choice of the tensor field ϕ of type (1, p) is motivated by the paper [8] where
operators of the above type were studied under some special properties of the input
fields. In addition to the result of [8], we give the full classification of operators
without the assumption of special properties of the input fields.

We shall give as examples full classification of natural bilinear operators trans-
forming a vector field X or a (1,1)-tensor field ϕ or a (1,2)-tensor field S and a
tensor field ψ into tensor fields.

We assume that all operators are natural in the sense of [3]. We use the general
properties of such operators. To classify natural differential operators on tensor
fields we use the method of an auxiliary linear symmetric connection K, [4, p. 144],
and the second-order reduction theorem, [7, p. 165]. We assume that a k-order
natural operator also depends on a symmetric linear connection K. Then, according
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to the second reduction theorem, such operator is factorized through the covariant
derivatives up to the order k and covariant derivatives of the curvature tensor of K
up to the order (k − 2). Finally, we assume that the operator is independent of K.

All manifolds and mappings are assumed to be smooth.

1. Preliminaries

Let M be an m-dimensional manifold and (xi) local coordinates on M . We shall
denote as ∂i and di local bases of vector fields and 1-forms.

First of all, we shall discuss the order of natural operators transforming two
tensor fields ϕ and ψ into tensor fields. We shall assume that ϕ is a tensor field of
type (1, p).

Theorem 1.1. All finite order natural differential operators transforming a (1, p),
p > 1, tensor field ϕ and an (r, s), s > r, tensor field ψ into (r, s+ p) tensor fields
Φ(ϕ,ψ) are R-bilinear and of order 1.

If we assume that the operator Φ is R-bilinear we can consider weaker conditions
on types of tensor fields ϕ and ψ.

Theorem 1.2. All finite order R-bilinear natural differential operators transfor-
ming a (1, p)-tensor field ϕ and an (r, s)-tensor field ψ into (r, s+ p)-tensor fields
Φ(ϕ,ψ) are of order 1.

Proof of Theorem 1.1. Let us assume a k-order, k ≥ 1, natural differential
operator

Φ: C∞(T (1,p)M)× C∞(T (r,s)M)→ C∞(T (r,s+p)M) ,
where p > 1 and s > r. Then the associated fibred morphism (denoted by the same
symbol)

Φ: Jk(T (1,p)M)×M Jk(T (r,s)M)→ T (r,s+p)M

is an equivariant mapping with respect to the actions of the (k+1)-order differential
group Gk+1

m = regJk0 (Rm,Rm)0 on the standard fibres of Jk(T (1,p)M), Jk(T (r,s)M)
and T (r,s+p)M . The restriction of the action of Gk+1

m to constant multiples of the
unite element of Gk+1

m implies that Φ has to satisfy the following condition

ks−r+pΦ(jkϕ, jkψ) = Φ(kp−1ϕ, kp∂ϕ, . . . , kp+k−1∂kϕ,(1.1)
ks−rψ, ks−r+1∂ψ, . . . , ks−r+k∂kψ)

for all k ∈ R+.
All exponents in the equation (1.1) are positive integers which implies, from the

homogeneous function theorem (see [3, p. 213]), that the operator Φ is a polynomial
of orders al in ∂lϕ and bl in ∂lψ such that

(1.2)
k∑
l=0

(
(p+ l − 1) al + (s− r + l) bl

)
= s− r + p .

Since all coefficients in (1.2) are positive there are only two solutions in non-negative
integers: a) a0 = 1 b1 = 1 and the others ai, bi are vanishing , b) a1 = 1 , b0 = 1
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and the others ai, bi are vanishing. These solutions correspond to R-bilinear 1st
order operators. �

Proof of Theorem 1.2. Let p, r, s are arbitrary. If we assume that the operator
is R-bilinear then it is a polynomial of orders al in ∂lϕ and bl in ∂lψ such that
the equation (1.2) is satisfied. But now some coefficients in (1.2) can be negative
or vanishing. There are only two solutions in natural numbers which corresponds
to R-bilinear operators: a) a0 = 1 b1 = 1 and the others ai, bi are vanishing , b)
a1 = 1 , b0 = 1 and the others ai, bi are vanishing. Hence all finite order natural
R-bilinear differential operators are of order 1. �

According to Theorems 1.1 and 1.2 all R-bilinear natural differential operators
Φ are of the form

Φ(ϕ,ψ) =
(
A
i1...irm1...mpt1...ts+1
j1...js+pkq1...qr

ϕkm1...mp ∂ts+1ψ
q1...qr
t1...ts(1.3)

+B
i1...irm1...mp+1t1...ts
j1...js+pkq1...qr

ψq1...qr
t1...ts ∂mp+1ϕ

k
m1...mp

)
∂i1 ⊗ · · · ⊗ ∂ir ⊗ dj1 ⊗ · · · ⊗ djs+p ,

where Ai1...irm1...mpt1...ts+1
j1...js+pkq1...qr

and Bi1...irm1...mp+1t1...ts
j1...js+pkq1...qr

are absolute invariant tensors
(see [3, p. 214]). Such absolute invariant tensors are all possible linear combinations,
with real coefficients, of tensor products of the identity I of TM , i.e.

(1.4) A
i1...irm1...mpt1...ts+1
j1...js+pkq1...qr

=
∑
σ

aσ δ
i1
σ(j1) . . . δ

ts+1
σ(qr)

and
(1.5) B

i1...irm1...mp+1t1...ts
j1...js+pkq1...qr

=
∑
σ

bσ δ
i1
σ(j1) . . . δ

ts
σ(qr) ,

aσ , bσ ∈ R, where σ runs all permutations of (r + s+ p+ 1) indices.
Moreover, to obtain natural operators, coefficients aσ, bσ have to satisfy some

identities. To calculate these identities, we use the method of an auxiliary linear
symmetric connection K, [4, p. 144], and the second reduction theorem, [7, p.
165]. We assume that the operator Φ also depends on K. Then, by the second
reduction theorem, the operator is factorized via the covariant derivatives of ϕ
and ψ with respect to K. So, we replace derivatives of tensor fields with covariant
derivatives and assume that the operator is independent of K which gives a system
of homogeneous linear equations for aσ and bσ.

Remark 1.1. Let us note that natural differential operators satisfy the naturality
condition, and, moreover, they are local, see [3, p. 143].

Then the assumptions of Theorem 1.1 immediately ensure that all local operators
(with values in any vector bundle) must be of finite order (see the Peetre-like
theorem, [3, p. 176]).

On the other hand bilinear operators satisfying the infinitesimal version of
naturality, i.e., commuting with Lie derivatives, can be completely described
without the locality assumption (see [1]). In particular, the bilinear operators
on vector fields producing vector fields and satisfying the Jacobi identity, i.e.,
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commuting with Lie derivatives, are just the Lie bracket, up to constant multiples,
without any locality assumption.

2. Natural R-bilinear operators transforming vector fields X
and tensor fields ψ into tensor fields of the same type as ψ

According to Theorem 1.2 all such natural R-bilinear operators are of order 1.

2.1. Operator Φ(X,−) applied to vector fields. It is very well known that
the Lie bracket is unique, up to a constant multiple, natural R-bilinear operator
transforming two vector fields into a vector field. We shall reprove this fact to
demonstrate the method of an auxiliary linear symmetric connection.

Theorem 2.1. All natural R-bilinear differential operators transforming two vector
fields into vector fields are constant multiples of the Lie bracket.

Proof. Let X and ψ = Y be vector fields. Then from (1.3)–(1.5)

Φ(X,Y ) = Φi ∂i ,

where

Φi = a1 X
m ∂mY

i + a2 X
i ∂mY

m + b1 Y
m ∂mX

i + b2 Y
i ∂mX

m .

Let us assume a natural differential operator Ψ transforming vector fields X, Y
and a linear symmetric connection K into vector fields. Then, according to the
second reduction theorem, [7, p. 165], this operator factorizes through covariant
derivatives ∇X and ∇Y and it is an R-bilinear operator. In coordinates we obtain

Ψi = a1 X
m∇mY i + a2 X

i∇mY m + b1 Y
m∇mXi + b2 Y

i∇mXm

= a1 X
m (∂mY i −Km

i
pY

p) + a2 X
i (∂mY m −Km

m
pY

p)
+ b1 Y

m (∂mXi −Km
i
pX

p) + b2 Y
i (∂mXm −Km

m
pX

p) ,

where Kj
i
k are the symbols of K. The part of Ψi independent of K coincides with

Φi, so we obtain for Φi the following identity

0 = (a1 X
mKm

i
p + a2 X

iKm
m
p)Y p + (b1 Y

mKm
i
p + b2 Y

iKm
m
p)Xp .

It is easy to see that this identity is satisfied if and only if

a1 + b1 = 0 , a2 = 0 = b2 .

So
Φi = a1 (Xm ∂mY

i − Y m ∂mXi) = a1 [X,Y ]i

and Φ(X,Y ) is a constant multiple of the Lie bracket [X,Y ]. �
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2.2. Operator Φ(X,−) applied to 1-forms.

Theorem 2.2. All natural R-bilinear operators transforming a vector field X and
a 1-form ψ into 1-forms are linear combinations, with real coefficients, of two
operators

d(ψ(X)) , iXdψ .

Proof. Let X be a vector field and ψ be a 1-form. Then by (1.3)–(1.5)

Φ(X,ψ) = Φi di ,

where

Φi = a1 X
m ∂mψi + a2 X

m ∂iψm + b1 ψi ∂mX
m + b2 ψm ∂iX

m .

Now, we replace partial derivatives with covariant derivatives with respect to
an auxiliary linear symmetric connection K and assume that the operator is
independent of K. We obtain the following identity

0 = (a1 + a2 − b2)XmKm
p
iψp − b1 ψiKm

m
pX

p .

So, we have
a1 + a2 − b2 = 0 , b1 = 0

and
Φi = a1 X

m (∂mψi − ∂iψm) + b2 (Xm ∂iψm + ψm ∂iX
m)

which is the coordinate expression of a1 iXdψ + b2 d(ψ(X)). �

Remark 2.1. In differential geometry the Lie derivative LXψ = iXdψ + diXψ
is very often used, but according to Theorem 2.2 any linear combination of
d(ψ(X)) , iXdψ is a natural 1-form.

2.3. Operator Φ(X,−) applied to (0,2)-tensor fields. We assume a (0, 2)-tensor
field ψ.

Theorem 2.3. All natural R-bilinear differential operators transforming a vector
field X and a (0, 2)-tensor field ψ into (0, 2)-tensor fields are linear combinations,
with real coefficients, of four operators

LXψ , LX ψ̃ , d(Xyψ) , d(Xyψ̃) ,

where ψ̃ is the (0, 2)-tensor field given as ψ̃(Y,Z) = ψ(Z, Y ) and (Xyψ)(Y ) =
ψ(X,Y ) for any vector fields X, Y, Z.

Proof. Let X be a vector field and ψ be a (0,2)-tensor field. Then by (1.3)–(1.5)

Φ(X,ψ) = Φij di ⊗ dj ,

where

Φij = a1 X
m ∂mψij + a2 X

m ∂mψji + a3 X
m ∂iψmj + a4 X

m ∂iψjm

+ a5 X
m ∂jψim + a6 X

m ∂jψmi + b1 ψij ∂mX
m + b2 ψji ∂mX

m

+ b3 ψmj ∂iX
m + b4 ψjm ∂iX

m + b5 ψim ∂jX
m + b6 ψmi ∂jX

m .
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Now, we replace partial derivatives with covariant derivatives with respect
to an auxiliary linear symmetric connection K and assume that the operator is
independent of K. We obtain the following identity

0 = (a1 + a3 − b3)XmKm
p
i ψpj + (a2 + a4 − b4)XmKm

p
j ψpi

+ (a1 + a5 − b5)XmKm
p
j ψip + (a2 + a6 − b6)XmKm

p
i ψjp

+ (a3 + a6)XmKi
p
j ψmp + (a4 + a5)XmKi

p
j ψpm

− b1 ψij Km
m
pX

p − b2 ψjiKm
m
pX

p .

The above identity is satisfied if and only if b1 = 0 = b2 and the following system
of homogeneous linear equations is satisfied

a1 + a3 − b3 = 0 , a1 + a5 − b5 = 0 ,
a2 + a4 − b4 = 0 , a2 + a6 − b6 = 0 ,

a4 + a5 = 0 , a3 + a6 = 0 .

Then we get

Φij = a1
(
Xm ∂mψij + ψmj ∂iX

m + ψim ∂jX
m
)

+ a2
(
Xm ∂mψji + ψmi ∂jX

m + ψjm ∂iX
m
)

+ a3
(
Xm ∂iψmj + ψmj ∂iX

m −Xm ∂jψmi − ψmi ∂jXm
)

+ a4
(
Xm ∂iψjm + ψjm ∂iX

m −Xm ∂jψim − ψim ∂jXm
)

which is the coordinate expression of a linear combination of LXψ , LX ψ̃ , d(Xyψ) ,
d(Xyψ̃) . �

Remark 2.2. Let us note that in above Theorem 2.3 we have used the Lie
derivation of any (0, 2)-tensor field defined as

(LXψ)(Y, Z) = X.ψ(Y,Z)− ψ([X,Y ], Z)− ψ(Y, [X,Z]),

for any vector fields X, Y, Z. In the case that ψ is a 2-form this Lie derivative
coincides with LXψ = iXdψ + diXψ.

3. Natural R-bilinear operators transforming (1,1)-tensor fields ϕ
and (∗, ∗)-tensor fields ψ into (∗, ∗+ 1)-tensor fields

A (1,1) tensor field ϕ can be considered as a linear mapping ϕ : TM → TM .
As Trϕ we assume the contraction and I : TM → TM is the identity. We do not
assume special properties of ϕ.

3.1. Operator Φ(ϕ,−) applied to (1,1)-tensor fields. Full classification of
natural R-bilinear operators transforming two (1,1)-tensor fields into (1,2)-tensor
fields was done in [4, p. 152] by using the other method. We recall this classification.

Theorem 3.1. All natural R-bilinear differential operators transforming (1, 1)-tensor
fields ϕ and ψ into (1, 2)-tensor fields form a 15 parameter family of operators
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given as a linear combination of the following operators
d(Trϕ)⊗ ψ , ψ ⊗ d(Trϕ) , d(Trψ)⊗ ϕ , ϕ⊗ d(Trψ) ,
(Trψ) d(Trϕ)⊗ I , (Trψ) I⊗ d(Trϕ) , (Trϕ) d(Trψ)⊗ I ,
(Trϕ) I⊗ d(Trψ) , (d(Trϕ) ◦ ψ)⊗ I , I⊗ (d(Trϕ) ◦ ψ) ,
(d(Trψ) ◦ ϕ)⊗ I , I⊗ (d(Trψ) ◦ ϕ) , d

(
Tr(ϕ ◦ ψ)

)
⊗ I ,

I⊗ d
(

Tr(ϕ ◦ ψ)
)
, N(ϕ,ψ) ,

where I is the identity of TM and N(ϕ,ψ) is the Frölicher-Nijenhuis bracket. �

Remark 3.1. It is very well known that the Frölicher-Nijenhuis bracket, [2], has
values in tangent-valued forms. If we assume operators transforming ϕ and ψ into
tangent-valued 2-forms we obtain 8 parameter family generated by

d(Trϕ) ∧ ψ , d(Trψ) ∧ ϕ .
(Trψ) d(Trϕ) ∧ I , (Trϕ) d(Trψ) ∧ I ,
(d(Trϕ) ◦ ψ) ∧ I , (d(Trψ) ◦ ϕ) ∧ I ,

d
(

Tr(ϕ ◦ ψ)
)
∧ I , N(ϕ,ψ) .

3.2. Operator Φ(ϕ,−) applied to 1-forms.

Lemma 3.1. We have the following 6 canonical 1st order natural R-bilinear
differential operators

(Trϕ) dψ , ψ ⊗ d(Trϕ) , d(Trϕ)⊗ ψ ,
dψ ◦1 ϕ , dψ ◦2 ϕ , d(ψ ◦ ϕ) ,

where (dψ ◦1 ϕ)(X,Y ) = dψ(ϕ(X), Y ) and (dψ ◦2 ϕ)(X,Y ) = dψ(X,ϕ(Y )) for any
vector fields X, Y . �

Remark 3.2. We have the following independent operators with values in 2-forms
(Trϕ) dψ , ψ ∧ d(Trϕ) , Alt(dψ ◦1 ϕ) , d(ψ ◦ ϕ)

which follows from Alt(dψ◦1ϕ) = Alt(dψ◦2ϕ) , where Alt is the antisymmetrisation.

Theorem 3.2. All natural R-bilinear differential operators transforming ϕ and ψ
into a (0, 2) tensor fields form a six parameter family of operators which is a linear
combination of operators from Lemma 3.1.

Proof. According to (1.3)–(1.5)
Φ(ϕ,ψ) = Φij di ⊗ dj ,

where
Φij = a1 ϕ

m
m ∂iψj + a2 ϕ

m
m ∂jψi + a3 ϕ

m
i ∂mψj + a4 ϕ

m
i ∂jψm

+ a5 ϕ
m
j ∂mψi + a6 ϕ

m
j ∂iψm

+ b1 ψi ∂mϕ
m
j + b2 ψi ∂jϕ

m
m + b3 ψj ∂mϕ

m
i + b4 ψj ∂iϕ

m
m

+ b5 ψm ∂iϕ
m
j + b6 ψm ∂jϕ

m
i .
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In order to calculate relations for coefficients ai, bi, i = 1, . . . , 6, we use the method
of an auxiliary linear symmetric connection K, [4, p. 144]. We replace derivatives of
tensor fields with covariant derivatives and assume that the operator is independent
of K. Then we get

0 = ϕmm
(
a1 + a2

)
Ki

p
j ψp

+ ϕmi
[(
a3 + a4 − b6

)
Km

p
j ψp − b3 Kp

p
m ψj

]
+ ϕmj

[(
a5 + a6 − b5

)
Km

p
i ψp − b1 Kp

p
m ψi

]
+ ϕmp

[
b1 Km

p
j ψi + b3 Km

p
i ψj + (b5 + b6)Ki

p
j ψm

]
.

Then b2 and b4 are arbitrary, b1 = b3 = 0 and
b6 = −b5 , a2 = −a1 , a4 = −a3 − b5 , a6 = −a5 + b5 .

Hence
Φij = a1 ϕ

m
m

(
∂iψj − ∂jψi

)
+ a3 ϕ

m
i

(
∂mψj − ∂jψm

)
+ a5 ϕ

m
j

(
∂mψi − ∂iψm

)
+ b2 ψi ∂jϕ

m
m + b4 ψj ∂iϕ

m
m

+ b5
(
ϕmj ∂iψm − ϕmi ∂jψm + ψm (∂iϕmj − ∂jϕmi )

)
.

which is the coordinate expression of a linear combination of operators from
Lemma 3.1. �

Corollary 3.1. If the 1-form ψ is closed, then all R-bilinear 1st order natural
differential operators form the 3-parameter family of operators generated by

ψ ⊗ d(Trϕ) , d(Trϕ)⊗ ψ , d(ψ ◦ ϕ) .
Moreover, we have 2 independent operators ψ ∧ d(Trϕ) and d(ψ ◦ϕ) with values in
2-forms.

Remark 3.3. We can define others natural R-bilinear operators on ϕ and ψ. But,
according to Theorem 3.2, they have to be obtained as linear combinations of
operators from Lemma 3.1.

Let X,Y be vector fields, in [8] the operator Φ was defined as follows
Φ(ϕ,ψ)(X,Y ) = (Lϕ(X)ψ − LX(ψ ◦ ϕ))(Y )

which can be expressed as the linear combination of operators from Lemma 3.1
Φ(ϕ,ψ) = dψ ◦1 ϕ− d(ψ ◦ ϕ) .

Further, according to [3, p. 69], we can define the Lie derivative of ψ with respect
to ϕ as

Lϕψ = [iϕ, d]ψ = iϕdψ − diϕψ
which is a 2-form. It is easy to see that

Lϕψ = dψ ◦1 ϕ+ dψ ◦2 ϕ− d(ψ ◦ ϕ) .
For the identity of TM we have

LI(ψ ◦ ϕ) = iId(ψ ◦ ϕ)− diI(ψ ◦ ϕ) = d(ψ ◦ ϕ)
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and we obtain, [8],
2 Alt Φ(ϕ,ψ) = Lϕψ − LI(ψ ◦ ϕ) .

3.3. Operator Φ(ϕ,−) applied to (0,2) tensor fields. Let us denote as Altψ
the antisymmetric part of ψ, i.e. in coordinates

Altψ = 1
2 (ψij − ψji) di ⊗ dj = ψij d

i ∧ dj .

First of all, we describe several types of 1st order natural R-bilinear operators
which are given by the tensorial operations (permutation of indices, tensor product,
contraction, exterior differential).

Lemma 3.2. ψ ⊗ d(Trϕ) defines six independent natural R-bilinear differential
operators given by permutations of subindices, so for vector fields X,Y, Z we have
operators

ψ(X,Y ) d(Trϕ)(Z) , ψ(Y,X) d(Trϕ)(Z) , ψ(X,Z) d(Trϕ)(Y ) ,
ψ(Z,X) d(Trϕ)(Y ) , ψ(Y,Z) d(Trϕ)(X) , ψ(Z, Y ) d(Trϕ)(X) .

Moreover, Altψ ∧ d(Trϕ) is the unique operator with values in 3-foms.

Corollary 3.2. If the tensor field ψ is symmetric or antisymmetric then we get
three independent operators from Lemma 3.2

ψ(X,Y ) d(Trϕ)(Z) , ψ(X,Z) d(Trϕ)(Y ) , ψ(Y,Z) d(Trϕ)(X)) .

Lemma 3.3. We have the following six independent natural R-bilinear differential
operators

(Trϕ) d(Altψ) , d(Altψ) ◦1 ϕ , d(Altψ) ◦2 ϕ , d(Altψ) ◦3 ϕ ,

d(Alt(ψ ◦1 ϕ)) , d(Alt(ψ ◦2 ϕ)) .

Corollary 3.3. 1. If ψ is symmetric then Altψ = 0 and Alt(ψ◦1ϕ) = −Alt(ψ◦2ϕ)
and we have the unique operator from Lemma 3.3

d(Alt(ψ ◦1 ϕ)) .

2. If ψ is antisymmetric then Altψ = ψ and Alt(ψ ◦1 ϕ) = Alt(ψ ◦2 ϕ) and we
have five independent operators from Lemma 3.3

(Trϕ) dψ , dψ ◦1 ϕ , dψ ◦2 ϕ , dψ ◦3 ϕ ,

d(Alt(ψ ◦1 ϕ)) .

From Alt(dψ ◦1 ϕ) = Alt(dψ ◦2 ϕ) = Alt(dψ ◦3 ϕ) we have 3 operators with values
in 3-forms.

Moreover, if ψ is a closed 2-form, then there is the unique operator from
Lemma 3.3

d(Alt(ψ ◦1 ϕ))
which has values in 3-forms.



298 J. JANYŠKA

If the tensor fields ϕ and ψ satisfy

(ψ ◦1 ϕ)(X,Y ) = (ψ ◦2 ϕ)(X,Y ) ⇔ ψ(ϕ(X), Y ) = ψ(X,ϕ(Y ))

then ψ is said to be pure with respect to ϕ. Natural R-bilinear differential operators
Φ(ϕ,ψ) on pure tensor fields were studied in [5, 8]. We recall the main result.

Theorem 3.3. Let ψ is pure with respect to ϕ. Then

Φ(ϕ,ψ)(X,Y, Z) =
(
Lϕ(X)ψ − LX(ψ ◦1 ϕ)

)
(Y, Z)

is a (0, 3)-tensor field. �

The above operator for pure tensor fields can be generalized for any tensor field
ψ.

Theorem 3.4. For any vector fields X,Y, Z the operators

Φ1(ϕ,ψ)(X,Y, Z) =
(
Lϕ(X)ψ − LX(ψ ◦1 ϕ)

)
(Y, Z)

−
(
Lϕ(Z)ψ − LZ(ψ ◦1 ϕ)

)
(Y,X)

+ (ψ ◦2 ϕ)(Y, [X,Z])− (ψ ◦1 ϕ)(Y, [X,Z])

and

Φ2(ϕ,ψ)(X,Y, Z) =
(
Lϕ(X)ψ − LX(ψ ◦2 ϕ)

)
(Y,Z)

−
(
Lϕ(Y )ψ − LY (ψ ◦2 ϕ)

)
(X,Z)

− (ψ ◦2 ϕ)([X,Y ], Z) + (ψ ◦1 ϕ)([X,Y ], Z)

are (0, 3)-tensor fields with the coordinate expressions

Φ1(ϕ,ψ)(X,Y, Z) =
(
ϕmi ∂mψjk + ϕmj (∂kψmi − ∂iψmk)− ϕmk ∂mψji

+ ψmi (∂kϕmj − ∂jϕmk ) + ψjm (∂kϕmi − ∂iϕmk )
+ ψmk (∂jϕmi − ∂iϕmj )

)
Xi Y j Zk

and

Φ2(ϕ,ψ)(X,Y, Z) =
(
ϕmi ∂mψjk − ϕmj ∂mψik + ϕmk (∂jψim − ∂iψjm)

− ψim (∂kϕmj − ∂jϕmk ) + ψjm (∂kϕmi − ∂iϕmk )
+ ψmk (∂jϕmi − ∂iϕmj )

)
Xi Y j Zk ,

respectively.

Proof. It is easy to prove it in coordinates. �

Remark 3.4. Any linear combination of the above operators is an R-bilinear
operator, for instance(

6 d(Altψ) ◦3 ϕ− 6 d(Alt(ψ ◦1 ϕ))− Φ1(ϕ,ψ)
)
(X,Y, Z) =

=
(
ϕmi (∂jψmk − ∂kψmj − ∂mψjk) + ϕmk (∂iψjm − ∂jψim + ∂mψij)

+ (ψjm + ψmj) (∂iϕmk − ∂kϕmi )
)
Xi Y j Zk ,
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6 d(Altψ) ◦1 ϕ− 6 d(Alt(ψ ◦2 ϕ))− Φ2(ϕ,ψ)

)
(X,Y, Z) =

=
(
ϕmi (∂kψmj − ∂jψmk − ∂mψkj) + ϕmj (∂iψkm − ∂kψim + ∂mψik)

+ (ψkm + ψmk) (∂iϕmj − ∂jϕmi )
)
Xi Y j Zk ,

(
− 6 d(Altψ) ◦2 ϕ+ 6 d(Altψ) ◦3 ϕ

− Φ1(ϕ,ψ) + Φ2(ϕ,ψ)
)
(X,Y, Z) =

=
(
ϕmj (∂iψkm − ∂kψim − ∂mψki) + ϕmk (∂jψmi − ∂iψmj + ∂mψij)

+ (ψim + ψmi) (∂jϕmk − ∂kϕmj )
)
Xi Y j Zk ,

and (
Φ1(ϕ,ψ) + Φ2(ϕ,ψ)

)
(X,Y, Z) =

=
(
2ϕmi ∂mψjk + ϕmj (∂kψmi − ∂iψmk − ∂mψik)
+ ϕmk (∂jψim − ∂iψjm − ∂mψji)
+ (ψim − ψmi) (∂jϕmk − ∂kϕmj )− 2ψjm (∂iϕmk − ∂kϕmi )
− 2ψmk (∂iϕmj − ∂jϕmi )

)
Xi Y j Zk

are such operators which we shall need later.

Theorem 3.5. All natural R-bilinear differential operators Φ transforming a
(1, 1)-tensor field ϕ and a (0, 2)-tensor field ψ into (0, 3)-tensor fields form a
14-parameter family which is a linear combination of operators described in Lemma 3.3,
Lemma 3.2 and Theorem 3.4.

Proof. By Theorem 1.2 and (1.3)–(1.5) we get that all natural R-bilinear differen-
tial operators are of the form

Φ(ϕ,ψ) = Φijk di ⊗ dj ⊗ dk ,

where

Φijk = a1 ϕ
m
m ∂iψjk + a2 ϕ

m
m ∂iψkj + a3 ϕ

m
m ∂jψik + a4 ϕ

m
m ∂jψki

+ a5 ϕ
m
m ∂kψij + a6 ϕ

m
m ∂kψji

+ a7 ϕ
m
i ∂mψjk + a8 ϕ

m
i ∂mψkj + a9 ϕ

m
i ∂jψmk + a10 ϕ

m
i ∂jψkm

+ a11 ϕ
m
i ∂kψmj + a12 ϕ

m
i ∂kψjm

+ a13 ϕ
m
j ∂iψmk + a14 ϕ

m
j ∂iψkm + a15 ϕ

m
j ∂mψik + a16 ϕ

m
j ∂mψki

+ a17 ϕ
m
j ∂kψim + a18 ϕ

m
j ∂kψmi

+ a19 ϕ
m
k ∂iψjm + a20 ϕ

m
k ∂iψmj + a21 ϕ

m
k ∂jψim + a22 ϕ

m
k ∂jψmi

+ a23 ϕ
m
k ∂mψij + a24 ϕ

m
k ∂mψji

+ b1 ψij ∂kϕ
m
m + b2 ψji ∂kϕ

m
m + b3 ψik ∂jϕ

m
m + b4 ψki ∂jϕ

m
m

+ b5 ψjk ∂iϕ
m
m + b6 ψkj ∂iϕ

m
m
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+ b7 ψmj ∂kϕ
m
i + b8 ψjm ∂kϕ

m
i + b9 ψmk ∂jϕ

m
i + b10 ψkm ∂jϕ

m
i

+ b11 ψjk ∂mϕ
m
i + b12 ψkj ∂mϕ

m
i

+ b13 ψim ∂kϕ
m
j + b14 ψmi ∂kϕ

m
j + b15 ψik ∂mϕ

m
j + b16 ψki ∂mϕ

m
j

+ b17 ψmk ∂iϕ
m
j + b18 ψkm ∂iϕ

m
j

+ b19 ψij ∂mϕ
m
k + b20 ψji ∂mϕ

m
k + b21 ψim ∂jϕ

m
k + b22 ψmi ∂jϕ

m
k

+ b23 ψjm ∂iϕ
m
k + b24 ψmj ∂iϕ

m
k .

In order to calculate relations for coefficients ai, bi, i = 1, . . . , 24, we use the
method of an auxiliary linear symmetric connection K, [4, p. 144]. We replace
derivatives of tensor fields with covariant derivatives and assume that the operator
is independent of K. Then we get

0 = ϕmm
[
(a1 + a3)Ki

p
j ψpk + (a2 + a5)Ki

p
k ψpj + (a2 + a4)Ki

p
j ψkp

+ (a1 + a6)Ki
p
k ψjp + (a3 + a5)Kj

p
k ψip + (a4 + a6)Kj

p
k ψpi

]
+ ϕmi

[
(a7 + a9 − b9)Kj

p
m ψpk + (a8 + a10 − b10)Kj

p
m ψkp

+ (a7 + a12 − b8)Km
p
k ψjp + (a8 + a11 − b7)Km

p
k ψpj

+ (a9 + a11)Kj
p
k ψmp + (a10 + a12)Kj

p
k ψpm

− b12 Kp
p
m ψkj − b11 Kp

p
m ψjk

]
+ ϕmj

[
(a13 + a15 − b17)Ki

p
m ψpk + (a14 + a16 − b18)Ki

p
m ψkp

+ (a15 + a17 − b13)Km
p
k ψip + (a16 + a18 − b14)Km

p
k ψpi

+ (a13 + a18)Ki
p
k ψmp + (a14 + a17)Ki

p
k ψpm

− b16 Kp
p
m ψki − b15 Kp

p
m ψik

]
+ ϕmk

[
(a20 + a23 − b24)Ki

p
m ψpj + (a19 + a24 − b23)Ki

p
m ψjp

+ (a21 + a23 − b21)Km
p
j ψip + (a22 + a24 − b22)Km

p
j ψpi

+ (a20 + a22)Ki
p
j ψmp + (a19 + a21)Ki

p
j ψpm

− b20 Kp
p
m ψji − b19 Kp

p
m ψij

]
+ ϕmp

[
b19 Km

p
k ψij + b20 Km

p
k ψji + b15 Km

p
j ψik + b16 Km

p
j ψki

+ b11 Km
p
i ψjk + b12 Km

p
i ψkj

+ (b13 + b21)Kj
p
k ψim + (b14 + b22)Kj

p
k ψmi + (b8 + b23)Ki

p
k ψjm

+ (b7 + b24)Ki
p
k ψmi + (b10 + b18)Ki

p
j ψkm + (b9 + b17)Ki

p
j ψmk

]
.

So, the operator is independent of K if and only if the following conditions for
coefficients are satisfied:

I: Coefficients b1, . . . , b6 are arbitrary and we obtain that the corresponding part
of the operator Φ(ϕ,ψ) is a linear combination of operators from Lemma 3.2. We
shall put Bi = bi , i = 1, . . . , 6.
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II: For part staying with ϕmm we get that the coefficients a1, . . . , a6 satisfy the
conditions

a1 +a3 = 0 ,
a1 +a6 = 0 ,

a2 +a5 = 0 ,
a2 +a4 = 0 ,

a3 +a5 = 0 ,
a4 +a6 = 0 .

This system of equations has one free variable and putting a6 = B7 and the others
free variables are vanishing we get a multiple of the operator

Φijk = ϕmm
(
∂iψjk − ∂iψkj + ∂jψki − ∂jψik + ∂kψij − ∂kψji

)
which is a multiple of the operator

(Trϕ) d(Altψ)

from Lemma 3.3.

III: For part staying with ϕpm we get the following conditions. The coefficients
b11 = b12 = b15 = b16 = b19 = b20 = 0.

Further

b24 = −b7 , b23 = −b8 , b22 = −b14 ,

b21 = −b13 , b18 = −b10 , b17 = −b9 .

IV: For part staying with ϕpi the coefficients a7, . . . , a12 satisfy

a7 +a9 = b9 ,
a7 +a12 = b8 ,

a8 +a11 = b7 ,
a8 +a10 = b10 ,

a9 +a11 = 0 ,
a10 +a12 = 0 .

V: For part staying with ϕpj the coefficients a13, . . . , a18 satisfy

a13 +a15 = b17 ,
a13 +a18 = 0 ,

a14 +a17 = 0 ,
a14 +a16 = b18 ,

a15 +a17 = b13 ,
a16 +a18 = b14 .



302 J. JANYŠKA

VI: For part staying with ϕpk the coefficients a19, . . . , a24 satisfy

a19 +a21 = 0 ,
a19 +a24 = b23 ,

a20 +a23 = b24 ,
a20 +a22 = 0 ,

a21 +a23 = b21 ,
a22 +a24 = b22 .

The above systems IV–VI of linear equations we modify to
a7 +a9 = b9 ,

a8 +a10 = b10 ,
a9 +a11 = 0 ,

a10 +a12 = 0 ,
a11 +a12 = b7 − b10 ,

0 = b7 − b10 − b8 + b9 .

a13 +a15 = b17 ,
a14 +a16 = b18 ,

a15 +a17 = b13 ,
a16 +a18 = b14 ,

a17 +a18 = b13 − b17 ,
0 = b14 − b18 − b13 + b17 .

a19 +a21 = 0 ,
a20 +a22 = 0 ,

a21 +a23 = b21 ,
a22 +a24 = b22 ,

a23 +a24 = b21 + b23 ,
0 = b22 + b24 − b21 − b23 ,

So, for coefficients b7 , b8 , b9 , b10 , b13 , b14 , b17 , b18 , b21 , b22 , b23 , b24 we have
a system of homogeneous linear equations with 4 independent variables. We choose
as these free variables b18 = B8, b22 = B9, b23 = B10 and b24 = B11. We obtain

b7 = −B11 , b18 = B8 ,

b8 = −B10 , b17 = B8 −B10 +B11 ,

b9 = −B8 −B10 +B11 , b21 = B9 −B10 +B11 ,

b10 = −B8 , b22 = B9 ,

b13 = −B9 +B10 −B11 , b23 = B10 ,

b14 = −B9 , b24 = B11 .

Now, putting a12 as a free variable B12, we get from the system of equations IV

a7 = −B12 −B10 , a10 = −B12 ,

a8 = B12 −B8 , a11 = −B12 +B8 −B11 ,

a9 = B12 −B8 +B11 , a12 = B12 .
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Further, putting a18 as a free variable B13, we get from the system of equations V

a13 = −B13 , a16 = −B13 −B9 ,

a14 = B13 +B8 +B9 , a17 = −B13 −B8 −B9 ,

a15 = B13 +B8 +B10 −B11 , a18 = B13 .

Finally, putting a24 as a free variable B14, we get from the system of equations VI

a19 = −B14 +B10 , a22 = −B14 +B9 ,

a20 = B14 −B9 , a23 = −B14 +B9 +B11 ,

a21 = B14 −B10 , a24 = B14 .

Let us put B12 = 1 and the others free variables are vanishing. We get

Φijk = −ϕmi
(
∂mψjk − ∂mψkj + ∂jψkm − ∂jψmk + ∂kψmj − ∂kψjm

)
which is the coordinate expression for a multiple of

d(Altψ) ◦1 ϕ .

Similarly for B13 = 1 (respective B14 = 1) and the others free variables vanishing
we get multiples of d(Altψ) ◦2 ϕ (respective d(Altψ) ◦3 ϕ).

If we put B8 = 1 and the others free variables vanishing we get

Φijk = ϕmi (∂kψmj − ∂mψkj − ∂jψmk) + ϕmj (∂iψkm + ∂mψik − ∂kψim)
+ (ψmk + ψkm) (∂iϕmj − ∂jϕmi ) .

According to Remark 3.4 this operator corresponds in coordinates to

6 d(Altψ) ◦1 ϕ− 6 d(Alt(ψ ◦2 ϕ))− Φ2(ϕ,ψ) .

If we put B9 = 1 and the others free variables vanishing we get

Φijk = ϕmj (∂iψkm − ∂mψki − ∂kψim) + ϕmk (−∂iψmj + ∂jψmi + ∂mψij)
+ (ψim + ψmi) (∂jϕmk − ∂kϕmj ) .

According to Remark 3.4 this operator corresponds in coordinates to

−6 d(Altψ) ◦2 ϕ+ 6 d(Altψ) ◦3 ϕ− Φ1(ϕ,ψ) + Φ2(ϕ,ψ) .

If we put B10 = 1 and the others free variables vanishing we get

Φijk =− ϕmi ∂mψjk + ϕmj ∂mψik + ϕmk (∂iψjm − ∂jψim)
+ ψjm (∂iϕmk − ∂kϕmi )− ψmk (∂jϕmi − ∂iϕmj )
+ ψim (∂kϕmj − ∂jϕmk ) .

If we put B11 = 1 and the others free variables vanishing we get

Φijk = ϕmi (∂jψmk − ∂kψmj)− ϕmj ∂mψik + ϕmk ∂mψij

+ ψmj (∂iϕmk − ∂kϕmi ) + ψmk (∂jϕmi − ∂iϕmj )
+ ψim (∂jϕmk − ∂kϕmj ) .
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Then the sum of the last 2 operators, i.e. B10 = 1 = B11, gives

Φijk = ϕmi (∂jψmk − ∂kψmj − ∂mψjk) + ϕmk (∂mψij + ∂iψjm − ∂jψim)
+ (ψjm + ψmj) (∂iϕmk − ∂kϕmi ) .

According to Remark 3.4 this operator corresponds in coordinates to

6 d(Altψ) ◦3 ϕ− 6 d(Alt(ψ ◦1 ϕ))− Φ1(ϕ,ψ) .

On the other side for B10 = 1 , B11 = −1 we have

Φijk = ϕmi (−∂jψmk + ∂kψmj − ∂mψjk) + 2ϕmj ∂mψik
+ ϕmk (−∂mψij + ∂iψjm − ∂jψim) + 2ψim (∂kϕmj − ∂jϕmk )
+ (ψjm − ψmj) (∂iϕmk − ∂kϕmi )− 2ψmk (∂jϕmi − ∂iϕmj )

which, according to Remark 3.4, corresponds in coordinates to

Φ1(ϕ,ψ) + Φ2(ϕ,ψ) .

So all 14 independent operators are generated by 14 independent operators described
in Lemma 3.3, Lemma 3.2 and Theorem 3.4. �

Remark 3.5. Let ψ be a 2-form. According to [3, p. 69] we can define the Lie
derivative of ψ with respect to ϕ as

Lϕψ = [iϕ, d]ψ = iϕdψ − diϕψ

which is a 3-form. It is easy to see that

Lϕψ = dψ ◦1 ϕ+ dψ ◦2 ϕ+ dψ ◦3 ϕ− 2 d(Alt(ψ ◦1 ϕ)) .

4. Natural operators transforming (1,2)-tensor fields S and 1-forms
ψ into (0,3)-tensor fields

Let us recall that, according to Theorem 1.1, all natural operators transforming
(1,2)-tensor fields S and 1-forms ψ into (0,3)-tensor fields are R-bilinear and of
order 1.

4.1. General case. We shall denote by C1
i S, i = 1, 2, the contraction with respect

to the corresponding indices.

Lemma 4.1. We have 6 canonical natural differential operators given by C1
i S⊗dψ,

i = 1, 2, namely

(C1
1S)(X) dψ(Y, Z) , (C1

1S)(Y ) dψ(X,Z) , (C1
1S)(Z) dψ(X,Y ) ,

(C1
2S)(X) dψ(Y,Z) , (C1

2S)(Y ) dψ(X,Z) , (C1
2S)(Z) dψ(X,Y ) .

Lemma 4.2. We have 6 canonical natural differential operators given by the
composition of S with dψ, namely

dψ(S(X,Y ), Z) , dψ(S(Y,X), Z) , dψ(S(X,Z), Y ) ,

dψ(S(Z,X), Y ) , dψ(S(Y,Z), X) , dψ(S(Z, Y ), X) .
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Lemma 4.3. We have 6 canonical natural differential operators given by ψ ⊗
d(C1

i S), i = 1, 2, namely

ψ(X)d(C1
1S)(Y, Z) , ψ(Y )d(C1

1S)(X,Z) , ψ(Z)d(C1
1S)(X,Y ) ,

ψ(X)d(C1
2S)(Y, Z) , ψ(Y )d(C1

2S)(X,Z) , ψ(Z)d(C1
2S)(X,Y .

Lemma 4.4. Let us assume the antisymmetric part AltS of S with the coordinate
expression AltS = 1

2 (Sijk − Sikj) ∂i ⊗ dj ⊗ dk. Then

(4.1) d(ψ ◦AltS)

is a first order natural R-bilinear differential operator with values in 3-forms.

Corollary 4.1. If the 1-form ψ is closed then we have only 7 operators from
Lemma 4.3 and Lemma 4.4.

Theorem 4.1. All natural differential operators transforming a (1, 2)-tensor field
S and a 1-form ψ into (0, 3)-tensor fields form a 19-parameter family of operators
described in Lemmas 4.1–4.4.

Proof. According to Theorem 1.1 and (1.3)–(1.5)

Φ(S, ψ) = Φijk di ⊗ dj ⊗ dk ,

where

Φijk = a1 S
m
mi ∂jψk + a2 S

m
mi ∂kψj + a3 S

m
mj ∂iψk + a4 S

m
mj ∂kψi

+ a5 S
m
mk ∂iψj + a6 S

m
mk ∂jψi

+ a7 S
m
im ∂jψk + a8 S

m
im ∂kψj + a9 S

m
jm ∂iψk + a10 S

m
jm ∂kψi

+ a11 S
m
km ∂iψj + a12 S

m
km ∂jψi

+ a13 S
m
ij ∂mψk + a14 S

m
ji ∂mψk + a15 S

m
ik ∂mψj + a16 S

m
ki ∂mψj

+ a17 S
m
jk ∂mψi + a18 S

m
kj ∂mψi

+ a19 S
m
ij ∂kψm + a20 S

m
ji ∂kψm + a21 S

m
ik ∂jψm + a22 S

m
ki ∂jψm

+ a23 S
m
jk ∂iψm + a24 S

m
kj ∂iψm

+ b1 ψi ∂jS
m
km + b2 ψi ∂jS

m
mk + b3 ψi ∂kS

m
jm + b4 ψi ∂kS

m
mj

+ b5 ψi ∂mS
m
jk + b6 ψi ∂mS

m
kj

+ b7 ψj ∂iS
m
km + b8 ψj ∂iS

m
mk + b9 ψj ∂kS

m
im + b10 ψj ∂kS

m
mi

+ b11 ψj ∂mS
m
ik + b12 ψj ∂mS

m
ki

+ b13 ψk ∂iS
m
jm + b14 ψk ∂iS

m
mj + b15 ψk ∂jS

m
im + b16 ψk ∂jS

m
mi

+ b17 ψk ∂mS
m
ij + b18 ψk ∂mS

m
ji

+ b19 ψm ∂iS
m
jk + b20 ψm ∂iS

m
kj + b21 ψm ∂jS

m
ik + b22 ψm ∂jS

m
ki

+ b23 ψm ∂kS
m
ij + b24 ψm ∂kS

m
ji .

In order to calculate relations for coefficients ai, bi, i = 1, . . . , 24, we use the method
of an auxiliary linear symmetric connection K, [4]. We replace derivatives of tensor
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fields with covariant derivatives and assume that the operator is independent of K.
Then we get

0 = ψp
[
Smmi

(
a1 + a2

)
Kk

p
j + Smim

(
a7 + a8

)
Kk

p
j

+ Smmj
(
a3 + a4

)
Kk

p
i + Smjm

(
a9 + a10

)
Kk

p
i

+ Smmk
(
a5 + a6

)
Kj

p
i + Smkm

(
a11 + a12

)
Kj

p
i

+ Smij
(
a13 + a19 − b23

)
Kk

p
m + Smji

(
a14 + a20 − b24

)
Kk

p
m

+ Smik
(
a15 + a21 − b21

)
Kj

p
m + Smki

(
a16 + a22 − b22

)
Kj

p
m

+ Smjk
(
a17 + a23 − b19

)
Ki

p
m + Smkj

(
a18 + a24 − b20

)
Ki

p
m

]
+ ψm

[
(b19 + b21)Ki

p
j S

m
pk + (b19 + b24)Ki

p
k S

m
jp

+ (b20 + b23)Ki
p
k S

m
pj + (b20 + b22)Ki

p
j S

m
kp

+ (b21 + b23)Kj
p
k S

m
ip + (b22 + b24)Kj

p
k S

m
pi

]
+ ψi

[
(b1 + b3)Kj

p
k S

m
pm + (b2 + b4)Kj

p
k S

m
mp

+ b5 (Km
p
j S

m
pk +Km

p
k S

m
jp −Km

m
p S

p
jk)

+ b6 (Km
p
k S

m
pj +Km

p
j S

m
kp −Km

m
p S

p
kj)
]

+ ψj
[
(b7 + b9)Ki

p
k S

m
pm + (b8 + b10)Ki

p
k S

m
mp

+ b11 (Km
p
i S

m
pk +Km

p
k S

m
ip −Km

m
p S

p
ik)

+ b12 (Km
p
k S

m
pi +Km

p
i S

m
kp −Km

m
p S

p
ki)
]

+ ψk
[
(b13 + b15)Ki

p
j S

m
pm + (b14 + b16)Ki

p
j S

m
mp

+ b17 (Km
p
i S

m
pj +Km

p
j S

m
ip −Km

m
p S

p
ij)

+ b18 (Km
p
j S

m
pi +Km

p
i S

m
jp −Km

m
p S

p
ji)
]
.

So, we get b3 = −b1, b4 = −b2, b9 = −b7, b10 = −b8, b16 = −b14, b15 = −b13
and b5 = b6 = b11 = b12 = b17 = b18 = 0. This corresponds to linear combination
of operators from Lemma 4.3.

Further a2 = −a1, a4 = −a3, a8 = −a7, a10 = −a9, a6 = −a5 and a12 = −a11
which gives a linear combinations of operators from Lemma 4.1.

For coefficients b19, . . . , b24 we obtain the following system of homogeneous linear
equations.

b19 +b21 = 0 ,
b19 +b24 = 0 ,

b20 +b23 = 0 ,
b20 +b22 = 0 ,

b21 +b23 = 0 ,
b22 +b24 = 0 .

This system of equations has one free variable and if we put b24 = −B we obtain
b19 = b22 = b23 = B and b20 = b21 = b24 = −B.
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Finally, we have the system of linear equations
a13 + a19 − b23 = 0 , a14 + a20 − b24 = 0 ,
a15 + a21 − b21 = 0 , a16 + a22 − b22 = 0 ,
a17 + a23 − b19 = 0 , a18 + a24 − b20 = 0 .

It gives the following operators
Φijk = a13 S

m
ij (∂mψk − ∂kψm) +B (Smij ∂kψm + ψm ∂kS

m
ij )

+ a14 S
m
ji (∂mψk − ∂kψm)−B (Smji ∂kψm + ψm ∂kS

m
ji )

+ a15 S
m
ik (∂mψj − ∂jψm)−B (Smik ∂jψm + ψm ∂jS

m
ik)

+ a16 S
m
ki (∂mψj − ∂jψm) +B (Smki ∂jψm + ψm ∂jS

m
ki)

+ a17 S
m
jk (∂mψi − ∂iψm) +B (Smjk ∂iψm + ψm ∂iS

m
jk)

+ a18 S
m
kj (∂mψi − ∂iψm)−B (Smkj ∂iψm + ψm ∂iS

m
kj) .

Now, if we put B = 0, we get a linear combination of operators from Lemma 4.2.
Finally, putting B = 1 and the others free variables are vanishing, we obtain

Φijk = Smij ∂kψm + ψm ∂kS
m
ij − Smji ∂kψm − ψm ∂kSmji(4.2)

− Smik ∂jψm − ψm ∂jSmik + Smki ∂jψm + ψm ∂jS
m
ki

+ Smjk ∂iψm + ψm ∂iS
m
jk − Smkj ∂iψm − ψm ∂iSmkj

+ ψm
(
∂iS

m
jk − ∂iSmkj − ∂jSmik + ∂jS

m
ki + ∂kS

m
ij − ∂kSmji

)
= (Smij − Smji ) ∂kψm + (Smki − Smik) ∂jψm + (Smjk − Smkj) ∂iψm

+ ψm
(
∂iS

m
jk − ∂iSmkj + ∂jS

m
ki − ∂jSmik + ∂kS

m
ij − ∂kSmji

)
.

The operator Φ(S, ψ) defined by (4.2) is a multiple of
d(ψ ◦AltS)

described in Lemma 4.4. So all natural operators are linear combinations of 19
operators from Lemmas 4.1–4.4. �

4.2. The case of tangent-valued 2-forms. Now, we assume that S is a tangent
valued 2-form, i.e. AltS = S. Then there are 3 independent operators given by
Lemma 4.1, 3 independent operators given by Lemma 4.2 and 3 independent
operators given by Lemma 4.3.

Remark 4.1. If S is a tangent-valued 2-form, then we have the Yano-Ako operator,
[8], defined as

Φ(S, ψ)(X,Y, Z) = (LS(X,Y )ψ)(Z)− (LX(ψ ◦ S))(Z, Y )
− (LY (ψ ◦ S))(X,Z) + (ψ ◦ S)([X,Y ], Z) .

We can express this operator as the linear combination of the basic operators in
the form

Φ(S, ψ)(X,Y, Z) = d(ψ ◦ S)(X,Z, Y ) + dψ(S(X,Y ), Z) .
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Remark 4.2. Let as assume that S is a tangent-valued 2-form. According to [2]
and [3, p. 69] we can define the Lie derivative of ψ with respect to S as

LSψ = [iS , d]ψ = iSdψ + diSψ

which is a 3-form. It is easy to see that
(LSψ)(X,Y, Z) = dψ(S(X,Y ), Z) + dψ(S(Y, Z), X) + dψ(S(Z,X), Y )

+ d(ψ ◦ S)(X,Y, Z) .

Remark 4.3. If S is a tangent-valued 2-form, then we can consider the Lie
derivation of ψ ◦ S with respect to the identity tensor I and obtain the tangent
valued 3-form

LI(ψ ◦ S) = iId(ψ ◦ S)− diI(ψ ◦ S) = d(ψ ◦ S) .
The Yano-Ako operator is antisymmetric in the first two arguments. On the other

hand LSψ and LI(ψ◦S) have values in 3-forms. If we assume the antisymmetrization
of the Yano-Ako operator we get the following identity, [8],

3 Alt Φ(ψ, S) = LSψ + 2LI(ψ ◦ S) .
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