Previous |  Up |  Next

Article

Keywords:
complex hyperbolic space; homogeneous real hypersurface; Lie hypersurface; homogeneous ruled real hypersurface; equidistant hypersurface; horosphere; sectional curvature; shape operator; integral curve of the characteristic vector field; holomorphic distributions; homogeneous curve
Summary:
We study homogeneous real hypersurfaces having no focal submanifolds in a complex hyperbolic space. They are called Lie hypersurfaces in this space. We clarify the geometry of Lie hypersurfaces in terms of their sectional curvatures, the behavior of the characteristic vector field and their holomorphic distributions.
References:
[1] Adachi, T., Bao, T., Maeda, S.: Congruence classes of minimal ruled real hypersurfaces in a nonflat complex space form. Hokkaido Math. J. 43 (2014), 137-150. DOI 10.14492/hokmj/1392906097 | MR 3178483 | Zbl 1288.53045
[2] Berndt, J.: Homogeneous hypersurfaces in hyperbolic spaces. Math. Z. 229 (1998), 589-600. DOI 10.1007/PL00004673 | MR 1664778 | Zbl 0929.53025
[3] Berndt, J., Tamaru, H.: Cohomogeneity one actions on noncompact symmetric spaces of rank one. Trans. Am. Math. Soc. 359 (2007), 3425-3438. DOI 10.1090/S0002-9947-07-04305-X | MR 2299462 | Zbl 1117.53041
[4] Chen, B.-Y., Maeda, S.: Hopf hypersurfaces with constant principal curvatures in complex projective or complex hyperbolic spaces. Tokyo J. Math. 24 (2001), 133-152. DOI 10.3836/tjm/1255958318 | MR 1844424 | Zbl 1015.53039
[5] Hamada, T., Hoshikawa, Y., Tamaru, H.: Curvatures properties of Lie hypersurfaces in the complex hyperbolic space. J. Geom. 103 (2012), 247-261. DOI 10.1007/s00022-012-0127-1 | MR 2995128 | Zbl 1266.53057
[6] Kimura, M., Maeda, S.: On real hypersurfaces of a complex projective space. Math. Z. 202 (1989), 299-311. DOI 10.1007/BF01159962 | MR 1017573 | Zbl 0661.53015
[7] Kon, S. H., Loo, T.-H.: Real hypersurfaces in a complex space form with {$\eta$}-parallel shape operator. Math. Z. 269 (2011), 47-58. DOI 10.1007/s00209-010-0715-4 | MR 2836059 | Zbl 1227.53071
[8] Lohnherr, M., Reckziegel, H.: On ruled real hypersurfaces in complex space forms. Geom. Dedicata 74 (1999), 267-286. DOI 10.1023/A:1005000122427 | MR 1669351 | Zbl 0932.53018
[9] Maeda, S.: Geometry of the horosphere in a complex hyperbolic space. Differ. Geom. Appl. 29 (2011), s246--s250. DOI 10.1016/j.difgeo.2011.04.048 | MR 2832025 | Zbl 1225.53056
[10] Maeda, S., Adachi, T.: Holomorphic helices in a complex space form. Proc. Am. Math. Soc. 125 (1997), 1197-1202. DOI 10.1090/S0002-9939-97-03627-7 | MR 1353391 | Zbl 0876.53045
[11] Maeda, S., Adachi, T., Kim, Y. H.: A characterization of the homogeneous minimal ruled real hypersurface in a complex hyperbolic space. J. Math. Soc. Japan 61 (2009), 315-325. DOI 10.2969/jmsj/06110315 | MR 2272881 | Zbl 1159.53012
[12] Maeda, S., Ohnita, Y.: Helical geodesic immersions into complex space forms. Geom. Dedicata 30 (1989), 93-114. DOI 10.1007/BF02424315 | MR 0995941 | Zbl 0669.53042
[13] Maeda, S., Tanabe, H.: A characterization of the homogeneous ruled real hypersurface in a complex hyperbolic space in terms of the first curvature of some integral curves. Arch. Math. 105 (2015), 593-599. DOI 10.1007/s00013-015-0839-1 | MR 3422863 | Zbl 1329.53032
[14] Niebergall, R., Ryan, P. J.: Real hypersurfaces in complex space forms. Tight and Taut Submanifolds. Based on the Workshop on Differential Systems, Submanifolds and Control Theory, Berkeley, CA, USA, 1994 Math. Sci. Res. Inst. Publ. 32, Cambridge University Press, Cambridge (1997), 233-305. MR 1486875 | Zbl 0904.53005
Partner of
EuDML logo